- •Тема 1. Механические колебания
- •Вопрос 1. Гармонические колебания. Скорость и ускорение гармонического колебания. Энергия гармонического колебания
- •Вопрос 2. Затухающие колебания. Декремент затухания. Апериодические колебания.
- •Вопрос 3. Вынужденные колебания. Резонанс.
- •Вопрос 4. Сложное колебание и его гармонический спектр.
- •Тема 2. Механические волны
- •Вопрос 5. Виды волн в упругой среде. Принцип Гюйгенса. Уравнение волны.
- •Вопрос 6. Интерференция волн в упругой среде.
- •Тема 3. Акустика
- •Вопрос 9. Виды звуков. Физические характеристики звука
- •Вопрос 10. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Звуковые измерения.
- •Вопрос 11. Физические основы работы аппарата слуха человека.
- •Вопрос 12. Ультразвук. Приемники и источники ультразвука. Действие ультразвука на ткани организма. Использование ультразвука в медицине.
- •Тема 4. Биореология
- •Вопрос 13. Внутреннее трение в жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости.
- •Вопрос 14. Течение жидкости в цилиндрических трубах. Формула Гагена-Пуазейля. Гидравлическое давление.
- •Вопрос 15. Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •Тема 5. Физические основы гемодинамики
- •Вопрос 16. Физическая модель сердечно-сосудистой системы. Пульсовая волна.
- •Вопрос 17. Механическая работа и мощность сердца. Физические основы клинического метода определения давления крови.
- •Тема 6. Биоэлектрогенез
- •Вопрос 18. Электрический диполь и его поле.
- •Вопрос 19. Физические основы электрокардиографии. Отведения при экг (стандартные, усиленные, грудные).
- •Тема 7. Действие постоянных и переменных токов и полей на ткани организма.
- •Вопрос 20. Цепи переменного тока с омическим сопротивлением, емкостью, индуктивностью.
- •Вопрос 21. Импеданс полной цепи переменного тока. Сдвиг фаз. Резонанс напряжений.
- •Вопрос 22. Импеданс тканей организма. Эквивалентная электрическая схема. Оценка жизнеспособности тканей и органов по частотной зависимости импеданса.
- •Вопрос 23. Физические процессы в тканях организма под действием электромагнитных высокочастотных токов и полей.
- •Вопрос 24. Импульсный сигнал и его параметры. Изменение формы импульсного сигнала при прохождении им линейных цепей.
- •Вопрос 25. Действие импульсных низкочастотных токов на ткани организма. Электростимуляция. Аккомодация. Диадинамические токи.
- •Тема 8. Медицинская электроника
- •Вопрос 26. Надежность электромедицинской аппаратуры.
- •Вопрос 27. Электроды для съема биоэлектрического сигнала. Требования к ним.
- •Вопрос 28. Датчики медико-биологической информации. Характеристики датчиков. Погрешности датчиков.
- •Тема 9. Интерференция и дифракция света
- •Вопрос 29. Общий случай интерференции
- •Вопрос 30. Интерференция света в тонких пленках. Просветление оптики. Интерференционные зеркала.
- •Вопрос 31. Дифракция света на щели
- •Вопрос 32. Дифракционная решетка. Дифракционный спектр.
- •Тема 10. Поляризация света
- •Вопрос 33. Свет естественный и поляризованный. Закон Малюса.
- •Вопрос 34. Поляризация при двойном лучепреломлении. Дихроизм.
- •Вопрос 35. Вращение плоскости поляризации. Поляриметрия.
- •Тема 11. Физика зрения. Микроскопия.
- •Вопрос 36. Оптическая система глаза. Аккомодация. Угол зрения. Разрешающая способность глаза.
- •Вопрос 37. Чувствительность глаза к свету и цвету.
- •Вопрос 38. Оптический микроскоп. Ход лучей. Увеличение. Разрешающая способность. Апертурный угол. Иммерсионные системы. Полезное увеличение.
- •Тема 12. Тепловое излучение тел
- •Вопрос 39. Характеристики теплового излучения. Абсолютно черное тело. Серые тела. Закон Кирхгофа, выводы из него.
- •Вопрос 40. Законы излучения абсолютно черного тела (Стефана-Больцмана, Вина). Формула Планка. Использование термографии в диагностике.
- •Тема 13. Поглощение света веществом.
- •Вопрос 41. Закон Бугера –Ламберта –Бера. Оптическая плотность. Концентрационная колориметрия.
- •Вопрос 42. Оптические атомные эмиссионные спектры. Молекулярные спектры. Применение спектрофотометрии в медицине и биологии.
- •Тема 14. Рентгеновское излучение
- •Вопрос 43. Тормозное рентгеновское излучение. Спектр излучения и его граница. Характеристическое рентгеновское излучение.
- •Вопрос 44. Взаимодействие рентгеновского излучения с веществом.
- •Вопрос 45. Физические основы рентгенографии.
Тема 14. Рентгеновское излучение
Вопрос 43. Тормозное рентгеновское излучение. Спектр излучения и его граница. Характеристическое рентгеновское излучение.
Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10-5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое -длинноволновым γ-излучением. По способу получения рентгеновское излучение подразделяют на тормозное и характеристическое.
В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомных электронов веществ антикатода (анода) возникает тормозное рентгеновское излучение.
Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.
При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов возникает рентгеновское излучение с непрерывным (сплошным) спектром. На рис. представлены зависимости потока рентгеновского излучения от длины волны (спектры) при разных напряжениях на рентгеновской трубке: U1 < U2 < U3.
В
каждом из спектров наиболее коротковолновое
тормозное излучение, соответствующее
длине волны min,
возникает
тогда, когда энергия, приобретенная
электроном в ускоряющем поле, полностью
переходит в энергию фотона:
откуда
Эту
формулу можно преобразовать в более
удобное для практических целей
выражение:
где min — минимальная длина волны, 10 -10 м; U — напряжение, кВ. Данная формула соответствует рис.
Коротковолновое рентгеновское излучение обычно обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое — мягким.
Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения, увеличивая долю жесткой компоненты.
Е
сли
увеличить температуру накала катода,
то возрастут эмиссия электронов и сила
тока в трубке. Это приведет к увеличению
числа фотонов рентгеновского излучения,
испускаемых каждую секунду. Спектральный
состав его не изменится. На рис показаны
спектры тормозного рентгеновского
излучения при одном напряжении, но при
разной силе тока накала катода: Iн1
< Iн2.
П
оток
рентгеновского излучения вычисляется
по формуле
г
де
U
и
I
— напряжение между электродами и сила
тока в рентгеновской трубке, Z
—
порядковый номер атома вещества
антикатода, k
= 10-9
В-1
— коэффициент пропорциональности.
Спектры, полученные от разных антикатодов
при одинаковых U
и
Iн,
изображены на рис.
У
величивая
напряжение на рентгеновской трубке,
можно заметить на фоне сплошного
спектра появление линейчатого, который
соответствует характеристическому
рентгеновскому излучению (см. рис.). Оно
возникает вследствие того, что ускоренные
электроны проникают в глубь атома и из
внутренних слоев выбивают электроны.
На свободные места переходят электроны
с верхних уровней (рис.), в результате
высвечиваются фотоны характеристического
излучения. Как видно из рисунка,
характеристическое рентгеновское
излучение состоит из серий К, L,
M
и т. д., наименование которых и послужило
для обозначения электронных слоев.
Так как при излучении K-серии
освобождаются места в более высоких
слоях, то одновременно испускаются и
линии других серий.
В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли:
где v — частота спектральной линии, Z — атомный номер испускающего элемента, А и В — постоянные.
Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О2 и Н2О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского излучения атома послужила основанием и для его названия (характеристическое).
Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.
