- •Тема 1. Механические колебания
- •Вопрос 1. Гармонические колебания. Скорость и ускорение гармонического колебания. Энергия гармонического колебания
- •Вопрос 2. Затухающие колебания. Декремент затухания. Апериодические колебания.
- •Вопрос 3. Вынужденные колебания. Резонанс.
- •Вопрос 4. Сложное колебание и его гармонический спектр.
- •Тема 2. Механические волны
- •Вопрос 5. Виды волн в упругой среде. Принцип Гюйгенса. Уравнение волны.
- •Вопрос 6. Интерференция волн в упругой среде.
- •Тема 3. Акустика
- •Вопрос 9. Виды звуков. Физические характеристики звука
- •Вопрос 10. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Звуковые измерения.
- •Вопрос 11. Физические основы работы аппарата слуха человека.
- •Вопрос 12. Ультразвук. Приемники и источники ультразвука. Действие ультразвука на ткани организма. Использование ультразвука в медицине.
- •Тема 4. Биореология
- •Вопрос 13. Внутреннее трение в жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости.
- •Вопрос 14. Течение жидкости в цилиндрических трубах. Формула Гагена-Пуазейля. Гидравлическое давление.
- •Вопрос 15. Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •Тема 5. Физические основы гемодинамики
- •Вопрос 16. Физическая модель сердечно-сосудистой системы. Пульсовая волна.
- •Вопрос 17. Механическая работа и мощность сердца. Физические основы клинического метода определения давления крови.
- •Тема 6. Биоэлектрогенез
- •Вопрос 18. Электрический диполь и его поле.
- •Вопрос 19. Физические основы электрокардиографии. Отведения при экг (стандартные, усиленные, грудные).
- •Тема 7. Действие постоянных и переменных токов и полей на ткани организма.
- •Вопрос 20. Цепи переменного тока с омическим сопротивлением, емкостью, индуктивностью.
- •Вопрос 21. Импеданс полной цепи переменного тока. Сдвиг фаз. Резонанс напряжений.
- •Вопрос 22. Импеданс тканей организма. Эквивалентная электрическая схема. Оценка жизнеспособности тканей и органов по частотной зависимости импеданса.
- •Вопрос 23. Физические процессы в тканях организма под действием электромагнитных высокочастотных токов и полей.
- •Вопрос 24. Импульсный сигнал и его параметры. Изменение формы импульсного сигнала при прохождении им линейных цепей.
- •Вопрос 25. Действие импульсных низкочастотных токов на ткани организма. Электростимуляция. Аккомодация. Диадинамические токи.
- •Тема 8. Медицинская электроника
- •Вопрос 26. Надежность электромедицинской аппаратуры.
- •Вопрос 27. Электроды для съема биоэлектрического сигнала. Требования к ним.
- •Вопрос 28. Датчики медико-биологической информации. Характеристики датчиков. Погрешности датчиков.
- •Тема 9. Интерференция и дифракция света
- •Вопрос 29. Общий случай интерференции
- •Вопрос 30. Интерференция света в тонких пленках. Просветление оптики. Интерференционные зеркала.
- •Вопрос 31. Дифракция света на щели
- •Вопрос 32. Дифракционная решетка. Дифракционный спектр.
- •Тема 10. Поляризация света
- •Вопрос 33. Свет естественный и поляризованный. Закон Малюса.
- •Вопрос 34. Поляризация при двойном лучепреломлении. Дихроизм.
- •Вопрос 35. Вращение плоскости поляризации. Поляриметрия.
- •Тема 11. Физика зрения. Микроскопия.
- •Вопрос 36. Оптическая система глаза. Аккомодация. Угол зрения. Разрешающая способность глаза.
- •Вопрос 37. Чувствительность глаза к свету и цвету.
- •Вопрос 38. Оптический микроскоп. Ход лучей. Увеличение. Разрешающая способность. Апертурный угол. Иммерсионные системы. Полезное увеличение.
- •Тема 12. Тепловое излучение тел
- •Вопрос 39. Характеристики теплового излучения. Абсолютно черное тело. Серые тела. Закон Кирхгофа, выводы из него.
- •Вопрос 40. Законы излучения абсолютно черного тела (Стефана-Больцмана, Вина). Формула Планка. Использование термографии в диагностике.
- •Тема 13. Поглощение света веществом.
- •Вопрос 41. Закон Бугера –Ламберта –Бера. Оптическая плотность. Концентрационная колориметрия.
- •Вопрос 42. Оптические атомные эмиссионные спектры. Молекулярные спектры. Применение спектрофотометрии в медицине и биологии.
- •Тема 14. Рентгеновское излучение
- •Вопрос 43. Тормозное рентгеновское излучение. Спектр излучения и его граница. Характеристическое рентгеновское излучение.
- •Вопрос 44. Взаимодействие рентгеновского излучения с веществом.
- •Вопрос 45. Физические основы рентгенографии.
Вопрос 42. Оптические атомные эмиссионные спектры. Молекулярные спектры. Применение спектрофотометрии в медицине и биологии.
Атомными спектрами называют как спектры испускания, так и спектры поглощения, которые возникают при квантовых переходах между энергетическими уровнями свободных или слабовзаимодействующих атомов.
Электроны в атомах могут находиться в стационарных энергетических состояниях. В этих состояниях атомы не излучают и не поглощают энергии. Энергетические состояния схематически изображают в виде уровней. Число электронов в атоме ограничено, при отсутствии внешних воздействий они заполняют только часть возможных электронных энергетических уровней с наименьшей энергией. Таким образом, оказываются заполненными нижние электронные уровни, тогда как верхние остаются свободными. Состояние атома с возможной минимальной энергией называют основным. Если атом получает энергию (например, при соударении с другими атомами или при поглощении кванта света), то может произойти переход какого-либо электрона с заполненного на более высокий свободный уровень. При этом атом оказывается в электронно-возбужденном состоянии с избыточной энергией.
Поглощение кванта возможно при условии, если его энергия равна разности энергий какого-либо свободного электронного уровня (Ei) и заполненного (Ek): hv = Ei - Ek,, i > k (*). Эта формула выражает закон сохранения энергии.
Возбужденные атомы стремятся перейти в состояние с наименьшей энергией. Поэтому происходят спонтанные квантовые переходы Ei —> Ek. Такие переходы могут быть безызлучательными (энергия передается окружающим атомам при столкновениях, вызывая нагрев тела) или излучательными с испусканием квантов света, энергия которых выражается формулой (*). Спонтанное излучение определяется в основном внутренними причинами, является случайным событием и имеет вероятностный характер. Обычные источники света испускают в основном спонтанное излучение.
Особо выделяется другой вид излучения, который называется вынужденным, или индуцированным. Оно возникает при взаимодействии кванта с возбужденным атомом.
Наибольший интерес представляют оптические атомные спектры испускания, которые получают от возбужденных атомов. Их возбуждение обычно достигается при электрическом разряде в газе или нагревании вещества пламенем газовых горелок, электрической дугой или искрой.
Атомные спектры в результате квантования энергии электронов и в соответствии с формулой (*) состоят из отдельных линий поглощения или испускания. Подробные сведения о спектрах конкретных атомов можно найти в специальных справочниках по спектроскопии. В качестве простого примера рассмотрим спектр атома водорода и водородоподобных ионов.
Формула для частоты света, излучаемого (поглощаемого) атомом водорода (заряд Z = 1):
г
де
i
и
k
—
порядковые номера уровней, между которыми
происходит переход. Эта формула была
получена на основании эксперимента И.
Я. Бальмером еще задолго до создания
квантовой механики и теоретически
обоснована Бором.
В спектре можно выделить группы линий, называемые спектральными сериями. Каждая серия применительно к спектрам испускания соответствует переходам с различных уровней на один и тот же конечный (см. рис.).
В ультрафиолетовой области находятся линии серии Лаймана, которая образуется при переходе с верхних энергетических уровней на самый нижний, основной (nk = 1). Для серии Лаймана получаем
т. е. находим частоты всех линий этой серии. Самая длинноволновая линия имеет наибольшую интенсивность. Интенсивности спектральных линий на рис. 24.5 условно показаны толщиной линий, отображающих соответствующие переходы.
В видимой и близкой ультрафиолетовой областях спектра расположена серия Бальмера, которая возникает вследствие переходов с верхних энергетических уровней на второй (nk = 2). Для серии Бальмера получаем
т. е. находим частоты всех линий этой серии.
К инфракрасной области относится серия Пашена, которая возникает при переходах с верхних энергетических уровней на третий (nk = 3). Для серии Пашена следует
Существуют и другие серии в инфракрасной области. Может показаться, что спектр атомарного водорода не ограничен со стороны малых частот, так как энергетические уровни по мере увеличения п становятся сколь угодно близкими. Однако на самом деле вероятность перехода между такими уровнями столь мала, что практически эти переходы не наблюдаются.
Выражение для работы ионизации атома водорода Аи = hv и потенциала ионизации можно получить, считая nk = 1 и ni →∞:
Для атомного спектрального анализа используют как спектры испускания (эмиссионный спектральный анализ), так и спектры поглощения (абсорбционный атомный спектральный анализ). Эмиссионный анализ часто служит для количественного определения микроэлементов в различных образцах, небольшого количества атомов металлов в консервированных продуктах и т. п.
Высокочувствительным и простым методом обнаружения микроколичеств щелочных и щелочноземельных металлов является пламенная фотометрия. Всего этим методом определяют около 50 элементов. Раствор анализируемых веществ распыляют в пламя газовой горелки, где вследствие высокой температуры вещества переходят в парообразное состояние. При этом проводят регистрацию спектров и интенсивности полос поглощения или испускания атомов. Эмиссионный метод обычно обладает большей чувствительностью, чем абсорбционный. Так как электронные переходы различных атомов отличаются по длине волны, возможно качественное и количественное определение сразу нескольких элементов в сложных смесях, какими являются многие биологические жидкости.
Молекулярные спектры (испускания и поглощения) возникают при квантовых переходах молекул с одного энергетического уровня на другой и состоят из совокупности более или менее широких полос, которые представляют собой тесно расположенные линии. Сложность молекулярных спектров по сравнению с атомными обусловлена большим разнообразием движений и, следовательно, энергетических переходов в молекуле.
Частота, излучаемая или поглощаемая молекулой:
здесь один или два штриха относятся к нижнему и верхнему уровням соответственно. Следует иметь в виду, что ΔЕэл >> ΔЕкол >> ΔЕвр . Если ΔЕэл = 0 и ΔЕкол = 0, а ΔЕвр ≠ 0, то получают состоящие из отдельных линий чисто вращательные молекулярные спектры, которым отвечают невысокие частоты. Такие спектры наблюдаются в далекой инфракрасной и микроволновой (СВЧ) областях.
Если ΔЕэл = 0, а ΔЕкол ≠ 0, то обычно одновременно и ΔЕвр ≠ 0, при этом возникает колебательно-вращательный спектр. Он состоит из колебательных полос, распадающихся при достаточном разрешении спектрального прибора на отдельные вращательные линии.
П
ри
ΔЕэл
≠ 0
обычно одновременно ΔЕкол
≠ 0 и ΔЕвр
≠ 0.
Образуются электронно-колебательные,
а точнее — электронно-колебательно-вращательные
спектры, которые состоят из различных
полос, а полосы — из тесно расположенных
линий, соответствующих вращательным
переходам. На рис. а
приведен
электронно-колебательный спектр молекулы
азота, а на рис. б
—
вращательное расщепление одной из
полос.
Электронно-колебательно-вращательные спектры испускания и поглощения наблюдают в видимой и ультрафиолетовой областях.
В сложных многоатомных молекулах с сопряженными двойными связями способность поглощать свет определяется главным образом молекулярными π-орбиталями. При взаимодействии молекулы с квантом света может произойти его поглощение при выполнении условия равенства энергии кванта разности энергий какого-либо свободного и заполненного уровней.
Рассмотрим, как протяженность системы сопряженных связей влияет на положение максимума спектра поглощения вещества, т. е. на его окраску.
Вычислим частоту vmin, соответствующую минимальной энергии поглощаемых квантов для электронного перехода с верхнего заполненного на нижний свободный уровень
откуда
получим:
Подставив в данную формулу длину системы сопряженных связей l = NL (L — длина одного звена), находим
При N ≥ 2 первый сомножитель можно принять приближенно равным 2/N, тогда
Следовательно, длина волны наиболее длинноволновой полосы поглощения тaх примерно пропорциональна N — числу сопряженных двойных связей в молекуле:
