- •Тема 1. Механические колебания
- •Вопрос 1. Гармонические колебания. Скорость и ускорение гармонического колебания. Энергия гармонического колебания
- •Вопрос 2. Затухающие колебания. Декремент затухания. Апериодические колебания.
- •Вопрос 3. Вынужденные колебания. Резонанс.
- •Вопрос 4. Сложное колебание и его гармонический спектр.
- •Тема 2. Механические волны
- •Вопрос 5. Виды волн в упругой среде. Принцип Гюйгенса. Уравнение волны.
- •Вопрос 6. Интерференция волн в упругой среде.
- •Тема 3. Акустика
- •Вопрос 9. Виды звуков. Физические характеристики звука
- •Вопрос 10. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Звуковые измерения.
- •Вопрос 11. Физические основы работы аппарата слуха человека.
- •Вопрос 12. Ультразвук. Приемники и источники ультразвука. Действие ультразвука на ткани организма. Использование ультразвука в медицине.
- •Тема 4. Биореология
- •Вопрос 13. Внутреннее трение в жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости.
- •Вопрос 14. Течение жидкости в цилиндрических трубах. Формула Гагена-Пуазейля. Гидравлическое давление.
- •Вопрос 15. Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •Тема 5. Физические основы гемодинамики
- •Вопрос 16. Физическая модель сердечно-сосудистой системы. Пульсовая волна.
- •Вопрос 17. Механическая работа и мощность сердца. Физические основы клинического метода определения давления крови.
- •Тема 6. Биоэлектрогенез
- •Вопрос 18. Электрический диполь и его поле.
- •Вопрос 19. Физические основы электрокардиографии. Отведения при экг (стандартные, усиленные, грудные).
- •Тема 7. Действие постоянных и переменных токов и полей на ткани организма.
- •Вопрос 20. Цепи переменного тока с омическим сопротивлением, емкостью, индуктивностью.
- •Вопрос 21. Импеданс полной цепи переменного тока. Сдвиг фаз. Резонанс напряжений.
- •Вопрос 22. Импеданс тканей организма. Эквивалентная электрическая схема. Оценка жизнеспособности тканей и органов по частотной зависимости импеданса.
- •Вопрос 23. Физические процессы в тканях организма под действием электромагнитных высокочастотных токов и полей.
- •Вопрос 24. Импульсный сигнал и его параметры. Изменение формы импульсного сигнала при прохождении им линейных цепей.
- •Вопрос 25. Действие импульсных низкочастотных токов на ткани организма. Электростимуляция. Аккомодация. Диадинамические токи.
- •Тема 8. Медицинская электроника
- •Вопрос 26. Надежность электромедицинской аппаратуры.
- •Вопрос 27. Электроды для съема биоэлектрического сигнала. Требования к ним.
- •Вопрос 28. Датчики медико-биологической информации. Характеристики датчиков. Погрешности датчиков.
- •Тема 9. Интерференция и дифракция света
- •Вопрос 29. Общий случай интерференции
- •Вопрос 30. Интерференция света в тонких пленках. Просветление оптики. Интерференционные зеркала.
- •Вопрос 31. Дифракция света на щели
- •Вопрос 32. Дифракционная решетка. Дифракционный спектр.
- •Тема 10. Поляризация света
- •Вопрос 33. Свет естественный и поляризованный. Закон Малюса.
- •Вопрос 34. Поляризация при двойном лучепреломлении. Дихроизм.
- •Вопрос 35. Вращение плоскости поляризации. Поляриметрия.
- •Тема 11. Физика зрения. Микроскопия.
- •Вопрос 36. Оптическая система глаза. Аккомодация. Угол зрения. Разрешающая способность глаза.
- •Вопрос 37. Чувствительность глаза к свету и цвету.
- •Вопрос 38. Оптический микроскоп. Ход лучей. Увеличение. Разрешающая способность. Апертурный угол. Иммерсионные системы. Полезное увеличение.
- •Тема 12. Тепловое излучение тел
- •Вопрос 39. Характеристики теплового излучения. Абсолютно черное тело. Серые тела. Закон Кирхгофа, выводы из него.
- •Вопрос 40. Законы излучения абсолютно черного тела (Стефана-Больцмана, Вина). Формула Планка. Использование термографии в диагностике.
- •Тема 13. Поглощение света веществом.
- •Вопрос 41. Закон Бугера –Ламберта –Бера. Оптическая плотность. Концентрационная колориметрия.
- •Вопрос 42. Оптические атомные эмиссионные спектры. Молекулярные спектры. Применение спектрофотометрии в медицине и биологии.
- •Тема 14. Рентгеновское излучение
- •Вопрос 43. Тормозное рентгеновское излучение. Спектр излучения и его граница. Характеристическое рентгеновское излучение.
- •Вопрос 44. Взаимодействие рентгеновского излучения с веществом.
- •Вопрос 45. Физические основы рентгенографии.
Вопрос 34. Поляризация при двойном лучепреломлении. Дихроизм.
Некоторые прозрачные кристаллы обладают свойством двойного лучепреломления: при попадании света на кристалл луч раздваивается. Для одного из лучей выполняются обычные законы преломления, и поэтому этот луч называют обыкновенным, для другого — эти законы не выполняются и луч называют необыкновенным.
Д
войное
лучепреломление при нормальном падении
света на поверхность кристалла показано
на рис.: обыкновенный (о)
луч,
как это следует из закона преломления,
проходит не преломляясь, необыкновенный
(е)
—
преломляется.
Направления, вдоль которых двойного лучепреломления нет и оба луча, обыкновенный и необыкновенный, распространяются с одной скоростью, называют оптическими осями кристалла (штриховая линия на рис.). Если такое направление одно, то кристаллы называют одноосными (они и рассматриваются в этом параграфе). К ним принадлежит исландский шпат (разновидность углекислого кальция СаС03 — кристалл гексагональной системы), кварц, турмалин (сложный алюмосиликат, кристаллы тригональной системы) и др. Плоскость, проходящая через оптическую ось и падающий луч, называется главной плоскостью кристалла. Колебания обыкновенного луча перпендикулярны главной плоскости, а необыкновенного — лежат в главной плоскости кристалла, т. е. эти лучи поляризованы во взаимно перпендикулярных плоскостях.
Двойное лучепреломление обусловлено особенностями распространения электромагнитных волн в анизотропных средах: амплитуды вынужденных колебаний электронов зависят от направлений этих колебаний.
Х
од
обыкновенных и необыкновенных лучей в
кристаллах можно наглядно представить
с помощью волновых поверхностей.
Предположим, что внутри кристалла
произошла световая вспышка и во все
стороны распространяются две волны:
обыкновенная и необыкновенная. В
некоторый момент времени их волновые
поверхности займут положения,
изображенные на рис. (а — для положительных
кристаллов, б
—
для отрицательных). Сферы соответствуют
обыкновенным волнам, имеющим по всем
направлениям одинаковую скорость υ0;
эллипсоиды — необыкновенным волнам,
скорость υе
которых
зависит от направления. Вдоль оптических
осей ОО'
скорость
обыкновенной и необыкновенной волн
одинакова и равна
где п0 — показатель преломления обыкновенного луча, зависящий от рода кристалла.
Для положительных кристаллов υе υо, для отрицательных υe ≥υо. Наибольшее различие скоростей обыкновенная и необыкновенная волны имеют в направлениях, перпендикулярных оптической оси; для этих направлений вводят показатель преломления пе необыкновенного луча. У исландского шпата (отрицательный кристалл) по = 1,6584, пе = 1,4864; у кварца (положительный кристалл) по = 1,5442, пе = 1,5533 (данные приведены для желтой линии натрия X = 589,3 нм).
Д
воякопреломляющие
кристаллы непосредственно не используются
как поляризаторы, так как пучки
обыкновенных и необыкновенных лучей
слишком мало расходятся или даже
перекрываются. Однако из этих кристаллов
изготовляют специальные поляризационные
призмы. Наиболее распространена призма
Николя или просто николь (см. рис.).
Некоторые кристаллы (турмалин), а также искусственно полученные полимерные пленки имеют сильно различающийся коэффициент поглощения для света с различным направлением колебаний электрического вектора. Это явление называется линейным дихроизмом. Так, в пластинке турмалина толщиной около 1 мм обыкновенный луч практически полностью поглощается и вышедший свет плоскополяризован.
Из мелких кристалликов герапатита (сернокислый иод-хинин) выкладывают значительные площади на целлулоидной пленке. Для их ориентации используют электрическое поле. Такие устройства (поляроиды) могут работать как поляризаторы (анализаторы).
Основным недостатком турмалина и поляроидов по сравнению с николем являются их плохие спектральные характеристики. Белый свет после прохождения этих поляризационных устройств становится окрашенным, в то время как николь прозрачен в видимой части спектра. Достоинство поляроидов — большая поверхность, что позволяет использовать широкие световые пучки.
