
- •Тема 1. Механические колебания
- •Вопрос 1. Гармонические колебания. Скорость и ускорение гармонического колебания. Энергия гармонического колебания
- •Вопрос 2. Затухающие колебания. Декремент затухания. Апериодические колебания.
- •Вопрос 3. Вынужденные колебания. Резонанс.
- •Вопрос 4. Сложное колебание и его гармонический спектр.
- •Тема 2. Механические волны
- •Вопрос 5. Виды волн в упругой среде. Принцип Гюйгенса. Уравнение волны.
- •Вопрос 6. Интерференция волн в упругой среде.
- •Тема 3. Акустика
- •Вопрос 9. Виды звуков. Физические характеристики звука
- •Вопрос 10. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Звуковые измерения.
- •Вопрос 11. Физические основы работы аппарата слуха человека.
- •Вопрос 12. Ультразвук. Приемники и источники ультразвука. Действие ультразвука на ткани организма. Использование ультразвука в медицине.
- •Тема 4. Биореология
- •Вопрос 13. Внутреннее трение в жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости.
- •Вопрос 14. Течение жидкости в цилиндрических трубах. Формула Гагена-Пуазейля. Гидравлическое давление.
- •Вопрос 15. Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •Тема 5. Физические основы гемодинамики
- •Вопрос 16. Физическая модель сердечно-сосудистой системы. Пульсовая волна.
- •Вопрос 17. Механическая работа и мощность сердца. Физические основы клинического метода определения давления крови.
- •Тема 6. Биоэлектрогенез
- •Вопрос 18. Электрический диполь и его поле.
- •Вопрос 19. Физические основы электрокардиографии. Отведения при экг (стандартные, усиленные, грудные).
- •Тема 7. Действие постоянных и переменных токов и полей на ткани организма.
- •Вопрос 20. Цепи переменного тока с омическим сопротивлением, емкостью, индуктивностью.
- •Вопрос 21. Импеданс полной цепи переменного тока. Сдвиг фаз. Резонанс напряжений.
- •Вопрос 22. Импеданс тканей организма. Эквивалентная электрическая схема. Оценка жизнеспособности тканей и органов по частотной зависимости импеданса.
- •Вопрос 23. Физические процессы в тканях организма под действием электромагнитных высокочастотных токов и полей.
- •Вопрос 24. Импульсный сигнал и его параметры. Изменение формы импульсного сигнала при прохождении им линейных цепей.
- •Вопрос 25. Действие импульсных низкочастотных токов на ткани организма. Электростимуляция. Аккомодация. Диадинамические токи.
- •Тема 8. Медицинская электроника
- •Вопрос 26. Надежность электромедицинской аппаратуры.
- •Вопрос 27. Электроды для съема биоэлектрического сигнала. Требования к ним.
- •Вопрос 28. Датчики медико-биологической информации. Характеристики датчиков. Погрешности датчиков.
- •Тема 9. Интерференция и дифракция света
- •Вопрос 29. Общий случай интерференции
- •Вопрос 30. Интерференция света в тонких пленках. Просветление оптики. Интерференционные зеркала.
- •Вопрос 31. Дифракция света на щели
- •Вопрос 32. Дифракционная решетка. Дифракционный спектр.
- •Тема 10. Поляризация света
- •Вопрос 33. Свет естественный и поляризованный. Закон Малюса.
- •Вопрос 34. Поляризация при двойном лучепреломлении. Дихроизм.
- •Вопрос 35. Вращение плоскости поляризации. Поляриметрия.
- •Тема 11. Физика зрения. Микроскопия.
- •Вопрос 36. Оптическая система глаза. Аккомодация. Угол зрения. Разрешающая способность глаза.
- •Вопрос 37. Чувствительность глаза к свету и цвету.
- •Вопрос 38. Оптический микроскоп. Ход лучей. Увеличение. Разрешающая способность. Апертурный угол. Иммерсионные системы. Полезное увеличение.
- •Тема 12. Тепловое излучение тел
- •Вопрос 39. Характеристики теплового излучения. Абсолютно черное тело. Серые тела. Закон Кирхгофа, выводы из него.
- •Вопрос 40. Законы излучения абсолютно черного тела (Стефана-Больцмана, Вина). Формула Планка. Использование термографии в диагностике.
- •Тема 13. Поглощение света веществом.
- •Вопрос 41. Закон Бугера –Ламберта –Бера. Оптическая плотность. Концентрационная колориметрия.
- •Вопрос 42. Оптические атомные эмиссионные спектры. Молекулярные спектры. Применение спектрофотометрии в медицине и биологии.
- •Тема 14. Рентгеновское излучение
- •Вопрос 43. Тормозное рентгеновское излучение. Спектр излучения и его граница. Характеристическое рентгеновское излучение.
- •Вопрос 44. Взаимодействие рентгеновского излучения с веществом.
- •Вопрос 45. Физические основы рентгенографии.
Тема 10. Поляризация света
Вопрос 33. Свет естественный и поляризованный. Закон Малюса.
Электромагнитную волну, в которой векторы Е и, следовательно, векторы В лежат во вполне определенных плоскостях, называют плоскополяризованной.
Плоскость, проходящая через электрический вектор Е и направление распространения электромагнитной волны, является плоскостью поляризации.
П
лоскополяризованную
волну излучает отдельный атом. В
естественном свете, идущем от Солнца,
накаленной нити лампы, газоразрядной
трубки, пламени и т. п., складываются
неупорядоченные излучения множества
атомов, поэтому направление Е
не
выдерживается в одной плоскости. Такой
свет можно рассматривать как наложение
плоскополяризованных волн с хаотической
ориентацией плоскостей колебаний,
электрические векторы ориентированы
по всевозможным перпендикулярным лучу
направлениям. На рис. показаны в
некоторый момент времени сечение луча
О
и
хаотическая ориентация векторов Е
в
плоскости, перпендикулярной лучу.
Если выбрать две любые взаимно перпендикулярные плоскости, проходящие через луч естественного света, и спроецировать векторы Е на эти плоскости, то в среднем эти проекции будут одинаковыми. Поэтому луч естественного света Удобно изображать как прямую, на которой расположено одинаковое число тех и других проекций в виде стрелок и то чек (рис. а). Таким образом, прямая с черточками (рис. б) или точками (рис. в) обозначает луч плоскополяризованного света.
Л
уч
света, состоящего из неполяризованной
и поляризованной составляющих и
называемого частично
поляризованным, условно
показан на рис. г,
д, причем
соотношение числа стрелок и точек
условно иллюстрирует степень
поляризации, т.
е. долю интенсивности поляризованной
составляющей относительно полной
интенсивности света.
Устройство, позволяющее получать поляризованный свет из естественного, называют поляризатором. Он пропускает только составляющую вектора Е на некоторую плоскость — главную плоскость поляризатора, которая содержит световой вектор Е и направление распространения света. При этом из поляризатора выходит поляризованный свет, интенсивность которого равна половине интенсивности падающего естественного (неполяризо-ванного) света. При вращении поляризатора относительно луча естественного света поворачивается плоскость колебаний вышедшего плоскополяризованного света, но интенсивность его не изменяется. Поляризатор можно использовать для анализа поляризованного света, тогда его называют анализатором.
Если плоскополяризованный свет с амплитудой электрического вектора Е0 падает на анализатор, то он пропустит только составляющую, равную
где φ — угол между главными плоскостями поляризатора Р и анализатора А (см. рис.).
Так как интенсивность света пропорциональна квадрату амплитуды колебаний, то получаем
где I0 — интенсивность плоскополяризованного света, падающего на анализатор, I — интенсивность света, вышедшего из анализатора. Данное уравнение выражает закон Малюса. Как видно из закона Малюса, при повороте анализатора относительно луча падающего плоскополяризованного света интенсивность вышедшего света изменяется от нуля до I0. Если при повороте анализатора вокруг падающего луча как оси вращения интенсивность прошедшего света не изменяется, то свет может быть естественным; если при этом интенсивность изменяется по закону Малюса, то падающий свет — плоскополяризованный.
Термин «поляризация света» имеет два смысла. Во-первых, под этим понимают свойство света, характеризующееся пространственно-временной упорядоченностью ориентации электрического и магнитного векторов. Во-вторых, поляризацией света называют процесс получения поляризованного света.