
- •1 Москва 2008
- •Авторы:
- •Глава 8. Статистическое изучение взаимосвязи социально-экономических явлений .................................................................................... 99
- •Глава 9. Статистическое изучение динамики
- •Глава 10. Статистический анализ структуры .................................................................. 138
- •Глава 11. Индексы .................................................................................................................. 147
- •Введение
- •Глава 1. Предмет, метод и организация статистики
- •1.1. Статистика как наука и отрасль практической деятельности
- •1.2. Статистическая деятельность в Российской Федерации
- •1.3. Основные категории статистики
- •Глава 2. Статистическое наблюдение
- •2.1. Сущность и виды статистического наблюдения
- •2.2. План статистического наблюдения
- •2.3. Точность статистического наблюдения
- •Глава 3. Статистическая сводка и группировка
- •3.1. Задачи сводки и ее содержание
- •3.2. Виды статистических группировок
- •3.3. Принципы построения статистических группировок и классификаций
- •Группировка коммерческих банков по величине капитала (в %% к итогу)
- •3.4. Сравнимость статистических группировок. Вторичная группировка
- •Распределение сотрудников предприятия по уровню дохода
- •3.5. Статистическая таблица и ее элементы
- •Название таблицы
- •3.6. Виды статистических таблиц
- •Ввод в действие зданий жилого назначения в Российской Федерации в 2003 г.
- •Группировка предприятий пищевой промышленности одного из регионов Российской Федерации по величине прибыли и численности промышленно- производственного персонала в 2003 г.
- •3.7. Основные правила построения и анализа статистических таблиц
- •01.01.2004 Г.» Названия таблицы, граф и строк пишутся полностью, без сокращений.
- •Глава 4. Графическое представление статистической информации
- •4.1. Роль и значение графического метода в статистике
- •4.2. Общие правила построения графического изображения
- •4.3. Классификация основных видов статистических графиков
- •4.4. Диаграммы сравнения
- •4.5. Диаграммы структуры
- •4.6. Диаграммы динамики
- •0 ≈ Годы
- •Стоимость основных производственных фондов, млн.Руб.
- •4.7. Статистические карты
- •1. Для построения фоновой картограммы предполагается предварительная группировка
- •Глава 5. Абсолютные, относительные и средние статистические показатели
- •5.1. Абсолютные показатели
- •24,0/29,3), А 100 т нефти при теплоте сгорания 45 мДж/кг будут оцениваться в 153,6 т ус-
- •5.2. Относительные показатели
- •3,5 Раза превышали инвестиции из бюджетов субъектов Федерации и местных бюджетов.
- •5.3. Средние показатели
- •Себестоимость продукции «z»
- •Валовой сбор и урожайность сельскохозяйственной культуры «y» по районам области
- •5.4. Структурные средние
- •Глава 6. Анализ вариации
- •6.1. Основные показатели вариации
- •6.2. Использование показателей вариации в анализе взаимосвязей
- •Глава 7. Выборочное наблюдение
- •7.1. Цели и этапы выборочного наблюдения
- •7.2. Собственно-случайная (простая случайная) выборка
- •7.3. Механическая (систематическая) выборка
- •7.4. Типическая (стратифицированная) выборка
- •7.5. Серийная выборка
- •Глава 8. Статистическое изучение взаимосвязи социально-экономических явлений
- •8.1. Причинность, регрессия, корреляция
- •8.2. Парная регрессия на основе метода наименьших квадратов
- •8.3. Множественная (многофакторная) регрессия
- •8.4. Собственно-корреляционные параметрические методы изучения связи
- •8.5. Принятие решений на основе уравнений регрессии
- •8.6. Методы изучения связи качественных признаков
- •8.7. Ранговые коэффициенты связи
- •Глава 9. Статистическое изучение динамики социально-экономических явлений
- •9.1 Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели в рядах динамики и методы их исчисления
- •9.5. Методы анализа основной тенденции (тренда) в рядах динамики
- •9.6. Методы выявления сезонной компоненты
- •9.7. Элементы прогнозирования и интерполяции
- •Глава 10. Статистический анализ структуры
- •10.1. Понятие структуры и основные направления ее исследования
- •10.2. Частные показатели структурных сдвигов
- •10.3. Обобщающие показатели структурных сдвигов
- •10.4. Показатели концентрации и централизации
- •Глава 11. Индексы
- •11.1. Общие понятия об индексах
- •11.2. Средние формы сводных индексов
- •11.3. Расчет сводных индексов за последовательные периоды
- •11.4. Индексный анализ влияния структурных изменений
- •Заключение
- •Рекомендуемая литература
- •1. Статистика как наука
- •2. Сбор статистической информации
- •2002 Г., ответы на которые нужно дать в форме чисел.
- •3. Статистическая сводка и группировка
- •4. Статистические таблицы
- •Внешняя торговля областей одного из федеральных округов рф
- •Распределение объема работ, выполненных по договорам строительного подряда, по формам собственности, в одном из регионов рф в 2002–2003 гг.1
- •5. Графическое изображение статистических данных
- •6. Формы выражения статистических показателей
- •6.1. Добыча нефти и угля в рф в 1999-2001 гг. Характеризуется следующими данными:
- •7. Показатели вариации и анализ частотных распределений
- •8. Выборочное наблюдение
- •9. Статистическое изучение взаимосвязи социально-экономических явлений
- •10. Статистическое изучение динамики социально-экономических явлений
- •11. Статистический анализ структуры
- •12. Экономические индексы
- •Задания для самостоятельной работы студентов Задание 1
- •Задание 3
- •Задание 4
- •Задание 6
- •Задание 7
- •Задание 8
- •Задание 9
- •Задание 10
- •Задание 11
- •Задание 12
- •Приложения
- •Нормальный закон распределения
- •Нормального закона распределения
- •200 Крупнейших по размеру собственного капитала банков России (по состоянию на 01.01.03, млн. Руб.)
- •Ответы к задачам
- •Глава 6
- •6.1. 697 Млн. Т; 734 млн. Т; 781 млн. Т. 6.2. Переменная база: 121,0%; 112,1%; 102,7%;
- •Глава 7
- •Глава 8
- •Глава 9
- •Гпава 10
- •10.1. А) моментный; б) моментный; в) моментный; г) интервальный; д) интерваль-
- •Глава 11
- •11.1. Государственная форма собственности: —1,8 проц. П.; 92,5%. 11.2. Предпри-
- •Глава 12
- •12.1. Индексы цен: 137,1%; 124,7%; 171,0%; индексы физического объема реализа-
Себестоимость продукции «z»
-
Предприятие
Себестоимость единицы
продукции, руб.
1
2
37
39
Можно ли по имеющимся данным определить среднюю себестоимость данной продукции по двум предприятиям, вместе взятым? Можно, но только в том случае, когда объемы производства данной продукции на двух предприятиях совпадают. Тогда средняя себестоимость составит 38,0 руб. (доказательство этого правила будет приведено ниже). Однако на первом предприятии за рассматриваемый период может быть произведено, к примеру, 50 единиц продукции, а на втором – 700 единиц. Тогда для расчета средней се- бестоимости потребуется уже средняя арифметическая взвешенная:
х = 37 × 50 + 39 × 700 = 38,9руб.
50 + 700
68
АБСОЛЮТНЫЕ, ОТНОСИТЕЛЬНЫЕ И СРЕДНИЕ СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ
Общий вывод заключается в следующем: использовать среднюю арифметическую невзвешенную можно только тогда, когда точно установлено отсутствие весов или их ра- венство.
При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. Рассмотрим следую- щий пример:
Распределение сотрудников предприятия по возрасту
Таблица 5.5.
-
Возраст (лет)
Число сотрудников (чел.)
до 25
25-30
30-40
40-50
50-60
60 и более
8
32
68
49
21
3
Итого:
181
Для определения среднего возраста персонала найдем середины возрастных интер- валов. При этом величины открытых интервалов (первого и последнего) условно прирав- ниваются к величинам интервалов, примыкающих к ним (второго и предпоследнего). С учетом этого середины интервалов будут следующими:
22, 5 27,5 35,0 45,0 55,0 65,0
Используя среднюю арифметическую взвешенную, определим средний возраст ра-
ботников данного предприятия:
х = 22,5 × 8 + 27,5 × 32 + 35 × 68 + 45 × 49 + 55 × 21 + 65 × 3 = 38,6 года.
8 + 32 + 68 + 49 + 21 + 3
Свойства средней арифметической. Средняя арифметическая обладает некото- рыми математическими свойствами, более полно раскрывающими ее сущность и в ряде случаев используемыми при ее расчете. Рассмотрим эти свойства:
1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты:
x∑ f i = ∑ x i f i
(5.6.)
Действительно, если мы обратимся к приведенному выше примеру расчета средне- го курса продажи акций (табл. 5.1.), то получим следующее равенство (за счет округления среднего курса правая и левая части равенства в данном случае будут несколько отличать- ся):
417,03 × 1850 = 420 × 700 + 440 × 200 + 410 × 950
2. Сумма отклонений индивидуальных значений признака от средней арифметиче-
ской равна нулю:
Для нашего примера:
∑ (x i − x)fi = 0 (5.7.)
(420–417,03) × 700 + (440–417,03) × 200 + (410–417,03) × 950 ≈ 0
69
АБСОЛЮТНЫЕ, ОТНОСИТЕЛЬНЫЕ И СРЕДНИЕ СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ
Математическое доказательство данного свойства сводится к следующему:
∑ (x i − x)fi = ∑ x i fi − ∑ xfi = ∑ x i fi − x∑ fi = 0
3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произ- вольной величины С:
2 2 2
∑ (xi − C) fi = ∑ (xi − x + x − C) fi = ∑[(xi − x) + ( x − C)]
fi =
= ∑[(xi − x)
+ 2(xi − x)( x − C) + ( x − C)
]fi = ∑ (xi − x)
fi +
2 2 2
(5.8.)
2 2
fi +
2
Следовательно, сумма квадратов отклонений индивидуальных значений признака от произвольной величины С больше суммы квадратов их отклонений от своей средней на величину
∑
i
На использовании этого свойства базируется расчет центральных моментов, пред-
ставляющих собой характеристики вариационного ряда при С = х : 1
µ k =
∑(x i
i
,
∑ fi
где k определяет порядок момента (центральный момент второго порядка представляет собой дисперсию).
4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же вели- чину:
∑ i i
∑i i
=
∑ i
±
= x ± A
(5.9.)
(x ± A)f
x f Af
∑ fi
∑ fi
∑ fi
Так, если все курсы продажи акций увеличить на 15 руб., то средний курс также увеличится на 15 руб.:
x = 435 × 700 + 455 × 200 + 425 × 950 = 417,03 + 15 = 432,03 руб.
1850
5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличится или уменьшится в А раз:
i
1 ∑ xifi
A
=
A
=
1
x
(5.10.)
∑ fi
∑ fi A
1 При С=0 получают начальные моменты (начальный момент 1-го порядка – средняя арифметическая и т.д.).
70
АБСОЛЮТНЫЕ, ОТНОСИТЕЛЬНЫЕ И СРЕДНИЕ СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ
Предположим, курс продажи в каждом случае возрастет в 2 раза. Тогда и средний курс также увеличится на 100%:
x
=
420
×
2
×
700
+
440
×
2
×
200
+
410
×
2
×
950
=
417,03
×
2
=
834,06
руб.
1850
6. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая от этого не изменится:
i
1 ∑ xifi
A = A = x
(5.11.)
∑ fi
1 ∑ fi
A A
Так, в нашем примере удобнее было бы рассчитывать среднюю, предварительно поделив все веса на 100:
х = 420 × 7 + 440 × 2 + 410 × 9,5 = 7715 = 417,03 руб.
7 + 2 + 9,5
18,5
Исходя из данного свойства, можно заключить, что если все веса равны между со- бой, то расчеты по средней арифметической взвешенной и средней арифметической не- взвешенной приведут к одному и тому же результату.
Кроме средней арифметической при расчете статистических показателей могут использоваться и другие виды средних. Однако в каждом конкретном случае, в зависимо- сти от характера имеющихся данных, существует только одно истинное среднее значение показателя, являющееся следствием реализации его исходного соотношения.
Средняя гармоническая взвешенная используется, когда известен числитель ис- ходного соотношения средней, но неизвестен его знаменатель. Рассмотрим расчет средней урожайности, являющейся одним из основных показателей эффективности производства в агробизнесе:
Таблица 5.6.