Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-23_1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
708.27 Кб
Скачать

10 Основные методы кинематического анализа.

Задачей кинематического анализа является изучение движения звеньев механизма вне зависимости от сил, действующих на них.

В результате по заданному закону движения ведущего звена определяются положения, угловые скорости и ускорения ведомых звеньев, а также перемещения, скорости, ускорения отдельных точек.

Кинематическое исследование схем механизмов производится аналитическими и графическими методами.

Аналитические методы позволяют с требуемой точностью установить аналитически функциональную зависимость кинематических параметров механизма от параметров звеньев. Эти методы отличаются сложностью и трудоемкостью. Их применение оправдывается при использовании ЭВМ. Графические методы исследования разделяются на:

1. Метод построения кинематических диаграмм.

2. Метод планов скоростей и ускорений. Метод построения кинематических диаграмм основан на графическом изображении перемещений, скоростей или ускорений отдельных точек звеньев в функции времени или перемещений ведущего звена.

Переход от графиков перемещений к графикам скоростей и ускорений производится путем графического дифференцирования, а обратно - графическим интегрированием.

Э тот метод дает наглядное представление об изменении кинематических параметров во времени.

М етод планов скоростей и ускорений позволяет при наличии планов положений механизма определить скорости и ускорения любых точек механизма для любого момента времени.Кинематические исследования этим методом начинаются с построена плана механизма, т. е. изображение его кинематической схемы в выбранном масштабе длины звеньев [ ],где -истинный размер звена, -его масштабное изображение в мм.

11 Графоаналитический метод кинематического анализа - метод планов скоростей и ускорений.

Пусть дан кривошипно - ползунный механизм, схема которого пока­зана на рис. 2.7. Известны длины звеньев, положение механизма и постоянная угловая скорость кривошипа W1. Требуется определить скорости и ускорения точек А, В, С, и угловые скорость и ускоре­ние шатуна W2 и E2.

2.3.1 Построение планов скоростей. Определяем скорость точки А кривошипа по формуле ,Здесь - длина кривошипа ОА в М.

Назначаем полюс плана скоростей РV и из него перпендику­лярно кривошипу ОА откладываем отрезок PV a (рис2.8), представляющий собой вектор скорости точки А при масштабном коэффициенте плана скоростей . который определяется выражением

где PV a -длина вектора в мм на плане скоростей. Для определения скорости точки В движение шатуна разложим на переносное поступательное со скоростью точки А и относитель­ное вращательное вокруг этой точки. Такое разложение движения описывается векторным уравнением.

В таблицу под уравнением внесены данные о величине и нап­равлении векторов. Неизвестными здесь являются величины векторов.

VB и VBA при известных их направлениях. Такое уравнение может быть решено графически построением плана скоростей. Из полюса PV проводится направление вектора , а из конца вектора скорости точки А - направление вектора . На пересечении этих прямых находится конец вектора скорости точки В (точка "в" плана скоростей). Теперь можно найти скорость любой другой точки. Например, для скорости точки С можно записать два векторных уравнения:

,

Проведя из точек а и в плана скоростей прямые, перпендикулярные отрезки АВ и ВС шатуна найдем конец вектора скорости точки С, начало его лежит в полюсе РV. Величины скоростей точек А, В, С в м/с определяются выражениями:

Т аким образом, если у звена известны величина и направление скорости одной точки и направление скорости (траектория) другой точки, то можно определить скорость любой его точки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]