Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Словарик.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.75 Mб
Скачать

27. Характеристика поля

Характеристика поля — наименьшее положительное целое число такое, что сумма копий единицы равна нулю:      Если такого числа не существует то характеристика равна 0 по определению.

 Характеристика поля всегда 0 или простое число.

  • Поле характеристики 0 содержит , поле рациональных чисел.

  • Поле характеристики p содержит , поле вычетов по модулю .

ХАРАКТЕРИСТИКА ПОЛЯ

целое положительное простое число или число 0, однозначно определяемое для данного поля следующим образом. Если для нек-рого п>0

где е - единица поля К, то наименьшее из таких пбудет простым числом и оно наз. характеристикой поля К. Если же такого числа не существует, то говорят, что X. п. Кравна нулю, или что К - поле нулевой характеристики. Иногда такое поле наз. полем без характеристики или полем бесконечной характеристики. Всякое поле нулевой характеристики содержит подполе, изоморфное полю всех рациональных чисел, а поле конечной характеристики р - подполе, изоморфное полю классов вычетов по модулю р.

28. Представление Определения и концепции

Пусть V — векторное пространство над полем F. Для примера, предположим, что V — это Rn или Cn, стандартное n-мерное пространство векторов-столбцов над полем вещественных или комплексных чисел соответственно. В данном случае идея теории представлений заключается в том, чтобы конкретизировать абстрактную алгебру использованием матриц n × n, элементами которых являются вещественные или комплексные числа.

Существует три вида алгебраических объектов, для которых это возможно: группы, ассоциативные алгебры и алгебры Ли.

  • Множество всех обратимых матриц n × n является группой по умножению матриц, и теория представлений групп анализирует группу, описывая (представляя) её элементы терминами обратимых матриц.

  • Сложение и умножение матриц делает множество всех матриц n × n ассоциативной алгеброй, и, следовательно, есть соответствующая теория представлений ассоциативных алгебр.

  • Если мы заменим матричное умножение MN матричным коммутатором MN — NM, то матрицы n × n заменят алгебру Ли, что приводит к созданию теории представлений алгебр Ли.

Это обобщается на любое поле F и любое векторное пространство V над F с заменой линейных отображений матрицами и заменой композиции отображений матричным умножением: получим группу GL(V,F) автоморфизмов над V, ассоциативную алгебру EndF(V) всех эндоморфизмов над V и соответствующую алгебру Ли gl(V,F).

Определение

Существует два способа определить представление. Первый использует идею действия группы, обобщая способ матрицы воздействовать на вектор-столбец с помощью матричного умножения. Представление группы G или алгебры A (ассоциативной или Ли) на векторном пространстве V — это отображение

с двумя свойствами. Во-первых, для любых g из G (или a из A), отображение

линейно (над F).

В зависимости от представленной группы различают разделы теории представлений:

  • конечные группы — См. Теория представлений конечных групп.

  • топологические группы — некоторые построения для представлений конечных групп можно обобщить и для бесконечных групп. Для локально компактных топологических групп это можно сделать с помощью меры Хаара. На результирующей теории во многом основан гармонический анализ, а также современное изложение общей теории Фурье.

  • группы Ли — многие группы Ли являются компактными. Соответственно к ним можно применить теорию представлений компактных групп.

Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.

Определение

Пусть — заданная группа и — векторное пространство. Тогда представление группы — это отображение, ставящее в соответствие каждому элементу невырожденное линейное преобразование причем выполняются свойства

Раздел математики, который изучает представления групп, называется теорией представлений (групп). Представление можно понимать как запись группы с помощью матриц или преобразований линейного пространства. Смысл использования представлений групп заключается в том, что задачи из теории групп сводятся к более наглядным задачам из линейной алгебры. Этим объясняется большая роль теории представлений в различных вопросах алгебры и других разделов математики. Например, одномерные представления симметрической группы и знакопеременной группы играют большую роль при доказательстве невозможности разрешения в радикалах алгебраического уравнения степени выше 4. В квантовой механике важную роль играют бесконечномерные (в которых векторное пространство — гильбертово) представления групп (в первую очередь, группы Лоренца).

Типы представлений

  • Представление называется точным, если ядро соответствующего гомоморфизма состоит лишь из единичного элемента.

  • Представление группы называется приводимым, если в векторном пространстве есть подпространство, отличное от нулевого и самого инвариантное для всех преобразований В противном случае представление называется неприводимым или простым. Теорема Машке утверждает, что конечномерные представления конечных групп над полем характеристики ноль (или положительной, но не делящей порядок группы) всегда раскладываются в прямую сумму неприводимых.

  • Всякое неприводимое представление коммутативной группы над полем комплексных чисел одномерно. Такие представления называются характерами.

  • Представление называется регулярным, если — пространство функций на группе и линейное преобразование ставит в соответствие каждой функции функцию

  • Представление называется унитарным относительно некоторого эрмитова скалярного произведения в пространстве над полем , если все преобразования являются унитарными. Представление называется унитаризуемым, если в векторном пространстве (над полем ) множно ввести такое эрмитово скалярное произведение, относительно которого оно является унитарным. Любое представление конечной группы унитаризуемо: достаточно выбрать в пространстве произвольное эрмитово скалярное произведение и определить искомое эрмитово скалярное произведение формулой

  • Если ― топологическая группа, то под представлением обычно понимается непрерывное линейное представление группы в топологическом векторном пространстве.

Примеры

  • Унитарная группа U(1) может быть представлена как группа вращений двумерного пространства вокруг центра.

  • Представление симметрической группы может быть получено следующим образом. Выберем в векторном пространстве размерности базис . Для каждой перестановки определим линейное преобразование переводящее базисный вектор в базисный вектор где Таким образом получается -мерное представление группы

  • Неприводимое двумерное представление группы можно получить, выбрав в плоскости базис положив вектор и определив для каждой перестановки линейное преобразование , переводящее в и в