- •1. Одноконтурная система аэп с Отрицательной ос по напряжению. Рассчитать скоростные характеристики, дать оценку их жесткости, привести область применения
- •2. Одноконтурная система аэп с положительной ос по току. Построить скоростные характеристики, дать оценку их жесткости, привести область применения
- •4. Система аэп с отрицательной ос по скорости и отсечкой по току. Построить скоростные характеристики, дать оценку их жесткости, привести области их применения.
- •Одноконтурная система аэп с отрицательной ос по скорости и упреждающим токовым ограничением. Пояснить принцип ограничения тока с помощью “токовой стенки”, привести область применения.
- •Оптимизировать контур тока якоря двухконтурной системы аэп с подчиненным регулированием параметров. Дать оценку влияния внутренней отрицательной ос по эдс на процессы в контуре тока.
- •Оценка влияния внутренней обратной связи по эдс на процессы в контуре тока
- •7. Оптимизировать контур скорости однократноинтегрирующей системы аэп. Дать оценку жесткости скоростных характеристик. Однократноинтегрирующая система аэп
- •9. Оптимизировать контур эдс двухконтурной системы аэп. Дать оценку жесткости скоростных характеристик.
- •10. Оптимизировать контур тока возбуждения системы стабилизации потока двигателя постоянного тока. На чем отразится замена пи регулятора на п регулятор тока возбуждения?
- •11. Что дает применение зи на входе системы регулирования? Чем отличаются переходные процессы при наличии зи с п и пи регулятором скорости?
- •С какой целью и в каких случаях проводится линеаризация контуров регулирования в двухзонном аэп? Какими средствами и как она осуществляется? Оптимизация контура эдс и его линеаризация
- •Линеаризация контура скорости в двухзонном аэп
- •13. Провести оптимизацию контура положения статической позиционной аэп для режима малых перемещений. Оценить ошибку регулирования.
- •Типы адаптивных систем аэп. Предельная передаточная функция беспоисковой системы аэп с сигнальной самонастройкой.
- •15. Беспоисковая адаптивная система аэп с переключающейся структурой регуляторов. В каких случаях применяется, привести пример практической реализации.
- •16. Варианты оптимизации контура скорости в одноконтурных системах аэп.
- •17.Системы аэп с вентильным двигателем. Каким образом осуществляется регулирование скорости вентильного двигателя. Дать пояснения схемной реализации адаптивного регулятора скорости.
- •1.1.1Общие сведения о работе вентильного двигателя
15. Беспоисковая адаптивная система аэп с переключающейся структурой регуляторов. В каких случаях применяется, привести пример практической реализации.
В системе АЭП используют типовые настройки (на СО, МО) контуров регулирования, определяющие статические и динамические свойства системы.
Вид частотной характеристики, частота среза определяют характер переходных процессов (быстродействие, перерегулирование и т.д.). Если при изменении параметров в объекте так изменять параметры регуляторов, чтобы вид частотных характеристик не изменился, то переходные процессы будут инвариантны при изменении параметров объекта.
Рисунок 7.8
Рисунок 7.9
Рисунок
7.10
Из
осциллограмм видно, что при одних и тех
же приращениях входного сигнала в режиме
непрерывного тока (РНТ)
больше, но выход на новое значение тока
идет по экспоненте с постоянной времени
Тэ. В режиме прерывистого тока (РПТ)
,
будет меньше по уровню, но ток выходит
на этот уровень практически мгновенно
(см. рисунок 7.10).
R/тп (РПТ) R/тп (РНТ) Тэ 0.
Если система АЭП была одноконтурной, то уменьшение коэффициента в звеньях ТП-ЯЦ будет вызывать уменьшение коэффициента в системе и приводить к более демпфированным переходным процессам, но система остается работоспособной. Если привод многоконтурный, то это вызывает снижение быстродействия в контуре тока и потере работоспособности системы в целом.
Проанализируем работу контура тока якоря с регулятором тока, рассчитанным для режима непрерывного тока при переходе ТП в режим прерывистых токов. Структурная схема контура тока в режиме непрерывного тока представлена на рисунке 7.11.
Рисунок
7.11
;
ЛАЧХ контура тока в режиме непрерывного и прерывистого токов представлена на рисунке 7.12.
Рисунок
7.12
– интегрирующее
звено,
где
.
.
При увеличении Rэ/ частота среза смещается в область более низких частот.
;
.
С переходом тиристорного преобразователя в режим прерывистых токов контур тока становится более инерционным.
Структурная схема контура тока в режиме прерывистого тока представлена на рисунке 7.13.
Рисунок
7.13
МО:
;
СО:
.
В режиме прерывистых токов
;
При настройке на МО
.
При настройке на МО ЛАЧХ контура скорости представлена на рисунке 7.14.
Так как частота среза разомкнутого контура скорости приходится на участок ЛАЧХ с наклоном –40дБ/дек, то контур скорости теряет работоспособность (т.е. становится неустойчивым).
Рисунок
7.14
Рисунок 7.15
В данном случае контур скорости становится еще более неустойчивым, так как частота среза приходится на участок с наклоном –60дБ/дек.
Для обеспечения оптимальной настройки системы как в РНТ, так и в РПТ, необходимо одновременно с изменением режима работы преобразователя изменять структуру регулятора тока.
