- •1. Одноконтурная система аэп с Отрицательной ос по напряжению. Рассчитать скоростные характеристики, дать оценку их жесткости, привести область применения
- •2. Одноконтурная система аэп с положительной ос по току. Построить скоростные характеристики, дать оценку их жесткости, привести область применения
- •4. Система аэп с отрицательной ос по скорости и отсечкой по току. Построить скоростные характеристики, дать оценку их жесткости, привести области их применения.
- •Одноконтурная система аэп с отрицательной ос по скорости и упреждающим токовым ограничением. Пояснить принцип ограничения тока с помощью “токовой стенки”, привести область применения.
- •Оптимизировать контур тока якоря двухконтурной системы аэп с подчиненным регулированием параметров. Дать оценку влияния внутренней отрицательной ос по эдс на процессы в контуре тока.
- •Оценка влияния внутренней обратной связи по эдс на процессы в контуре тока
- •7. Оптимизировать контур скорости однократноинтегрирующей системы аэп. Дать оценку жесткости скоростных характеристик. Однократноинтегрирующая система аэп
- •9. Оптимизировать контур эдс двухконтурной системы аэп. Дать оценку жесткости скоростных характеристик.
- •10. Оптимизировать контур тока возбуждения системы стабилизации потока двигателя постоянного тока. На чем отразится замена пи регулятора на п регулятор тока возбуждения?
- •11. Что дает применение зи на входе системы регулирования? Чем отличаются переходные процессы при наличии зи с п и пи регулятором скорости?
- •С какой целью и в каких случаях проводится линеаризация контуров регулирования в двухзонном аэп? Какими средствами и как она осуществляется? Оптимизация контура эдс и его линеаризация
- •Линеаризация контура скорости в двухзонном аэп
- •13. Провести оптимизацию контура положения статической позиционной аэп для режима малых перемещений. Оценить ошибку регулирования.
- •Типы адаптивных систем аэп. Предельная передаточная функция беспоисковой системы аэп с сигнальной самонастройкой.
- •15. Беспоисковая адаптивная система аэп с переключающейся структурой регуляторов. В каких случаях применяется, привести пример практической реализации.
- •16. Варианты оптимизации контура скорости в одноконтурных системах аэп.
- •17.Системы аэп с вентильным двигателем. Каким образом осуществляется регулирование скорости вентильного двигателя. Дать пояснения схемной реализации адаптивного регулятора скорости.
- •1.1.1Общие сведения о работе вентильного двигателя
9. Оптимизировать контур эдс двухконтурной системы аэп. Дать оценку жесткости скоростных характеристик.
Обратную связь по ЭДС применяют в тех случаях, когда ЭП однозонный (Е ) и требования к поддержанию скорости не высоки.
Контур тока в расчете аналогичен системам с обратной связью по скорости. Структурная схема системы ЭП с отрицательной обратной связью по ЭДС представлена на рисунке 5.41, где принято обозначение: Тяц – постоянная времени того участка ЯЦ двигателя, к которому подключается датчик напряжения.
Оптимизация контура ЭДС
В соответствии с рисунком 5.42, в состав контура ЭДС входят регулятор ЭДС, ЗКТ, датчик ЭДС, интегрирующее звено.
где Тэ = Тт + Тяц – малая постоянная времени контура ЭДС.
МО:
;
.
С П-регулятором замкнутый контур ЭДС является по заданию астатическим первого порядка, а по возмущению статическим.
.
Наличие фильтра в канале датчика ЭДС приводит к повышенному перерегулированию ЭДС двигателя. Настройка контура на МО была проведена по отношению к сигналу датчика ЭДС. Для приведения перерегулирования к норме на входе контура необходимо поставить фильтр с той же постоянной времени, что и у датчика ЭДС.
Тогда передаточная функция замкнутого контура ЭДС будет иметь вид
.
;
УР:
.
;
;
;
.
Жесткость скоростных характеристик при больших Тяц может быть хуже, чем в разомкнутой системе. Поэтому при подключении датчика напряжения подбирают такие точки съема сигнала, чтобы Тяц была минимальной.
10. Оптимизировать контур тока возбуждения системы стабилизации потока двигателя постоянного тока. На чем отразится замена пи регулятора на п регулятор тока возбуждения?
??????
Структурная схема контура тока возбуждения представлена на рисунке 5.47.
Рисунок 5.47
МО:
;
.
Получили ПИ-регулятор.
Если Тв 20Тв, то регулятор тока возбуждения может быть пропорциональным Wртв = kртв. С П-регулятором в системе будет ошибка по заданию, которую можно скомпенсировать увеличением задающего сигнала. (Если выбираем П-регулятор, то следует определить сигнал задания, который необходимо подать, чтобы Iв = Iвн). Uз будет немного больше 10В.
Принципиальная блочная схема стабилизации тока возбуждения и принципиальная схема тиристорного преобразователя возбуждения (ТПВ) представлены на рисунке 5.48.
Рисунок
5.48
Диаграмма работы ТПВ представлена на рисунке 5.49. Структурная схема ТПВ представлена на рисунке 5.50.
Рисунок
5.49
Рисунок 5.51
Рисунок
5.50
;
;
,
где Uоп – опорное напряжение СИФУ (см. рисунок 5.51).
Таблица 5.2. Зависимость угла управления от напряжения управления
-
Uув
0
180
max
0
;
;
;
.
;
.
;
.
Порядок расчета элементов принципиальной схемы контура тока возбуждения (см. рисунок 5.48):
1) задаемся Сдтв =10 мкФ;
2) определяем
;
(Тф = Твт
0,1Тв
=0,04 с)
(
);
4) рассчитываем Rотв = kртвRдтв = 16 41 = 656кОм;
5) находим
;
6) принимаем
;
7) вычисляем
.
