
- •Лекция 1 Задачи сопротивления материалов. Растяжение и сжатие
- •1.1 Основные формы элементов конструкций
- •1.2 Основные виды деформаций
- •1.3 Основные гипотезы науки о сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опоры и реакции
- •1.6 Внутренние силы. Метод сечений
- •1.7 Напряжение
- •1.8 Растяжение и сжатие
- •1.9 Нормальные напряжения. Условие прочности
- •1.10 Основные типы расчетов на прочность
- •Вопросы для самопроверки
- •Лекция 2 Опытное изучение механических свойств материалов
- •2.1 Опытное изучение свойств материалов при одноосном растяжении
- •2.2 Диаграмма растяжения стали марки Ст3
- •2.3 Наклеп
- •2.4 Диаграммы растяжения других конструкционных материалов
- •2.5 Испытание конструкционных материалов на сжатие
- •2.6 Определение твердости
- •Твердости по Виккерсу
- •2.7 Деформации при растяжении (сжатии)
- •Вопросы для самопроверки
- •Лекция 3 Геометрические характеристики плоских сечений
- •3.1 Статические моменты сечений
- •3.2 Моменты инерции сечений
- •3.3 Зависимость между моментами инерции относительно параллельных осей
- •3.4 Моменты инерции простых сечений
- •3.4.1 Прямоугольник
- •3.4.2 Треугольник
- •3 .4.3 Круг
- •3.4.4 Кольцо
- •3.5 Изменение моментов инерции при
- •3.6 Главные оси и главные моменты инерции
- •3.7 Понятие о радиусе инерции
- •3.8 Моменты сопротивления площади
- •3.9 Моменты инерции сечений сложной формы
- •3 .10 Стандартные прокатные профили
- •4.2 Закон парности касательных напряжений. Главные площадки и главные напряжения
- •4.3 Линейное напряженное состояние Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 4.2, в).
- •4.4 Плоское напряженное состояние
- •4.5 Объемное напряженное состояние
- •5.1 Первая гипотеза прочности: гипотеза наибольших нормальных
- •5.2 Вторая гипотеза прочности: гипотеза наибольших удлинений
- •5.3 Третья гипотеза прочности: гипотеза наибольших касательных
- •5.4 Четвертая гипотеза прочности: гипотеза потенциальной энергии
- •5.5 Определение внутренних сил, напряжений и деформаций при сдвиге
- •5.6 Анализ напряженного состояния при сдвиге
- •5 Рисунок 5.6 Соединение двух листов заклепками .7 Расчет на прочность
- •5.8 Примеры расчета
- •5.8.1 Расчет заклепочного соединения
- •5.8.2 Расчет болтового соединения
- •5.8.3 Расчет сварного соединения
- •5.8.4 Конструирование болта
- •Вопросы для самопроверки
- •Лекция 6 Кручение
- •6.1 Напряжения в поперечном сечении
- •6.2 Условие прочности при кручении вала
- •6.3 Деформации при кручении и условие жесткости
- •6.4 Определение крутящего момента и построение эпюр крутящих моментов
- •6.5 Расчет винтовых цилиндрических пружин с небольшим шагом
- •Вопросы для самопроверки
- •Лекция 7 Плоский изгиб: напряжения и прочность при изгибе
- •7.1 Напряжение при чистом изгибе
- •7.2 Условие прочности при изгибе
- •7.3 Напряжения при поперечном изгибе
- •7.4 Полная проверка прочности балки
- •7.5 Рациональные формы сечений балок
- •7.6. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 8 Плоский изгиб: построение эпюр поперечной силы и изгибающего момента
- •8.1. Построение эпюр поперечной силы и изгибающего момента
- •8.2 Правила проверки эпюр
- •Вопросы для самопроверки
- •Лекция 9 Сложное сопротивление
- •9.1 Сложный и косой изгиб
- •9.2 Внецентренное растяжение (сжатие) прямого бруса
- •9.3 Изгиб с кручением
- •Вопросы для самопроверки
- •Лекция 10 Устойчивость сжатых стержней: Продольный изгиб
- •10.1 Устойчивое и неустойчивое упругое равновесие
- •10.2 Формула Эйлера
- •10.3 Влияние способов закрепления концов стержня на критическую силу
- •10.4 Пределы применимости формулы Эйлера
- •10.5 Расчеты на устойчивость при помощи коэффициентов уменьшения основного допускаемого напряжения
- •10.6 Рациональные формы сечений стержней
- •Вопросы для самопроверки
- •Лекция 11 Динамическое нагружение
- •11.1 Понятие о динамическом действии нагрузки
- •11.2 Удар
- •11.3 Механические свойства материалов при ударе
- •11.4 Напряжения, изменяющиеся во времени. Явление усталости материалов
- •11.5 Влияние конструктивно-технологических факторов на предел усталости
- •11.5.1 Влияние концентрации напряжений
- •11.5.2 Влияние размеров (масштабный фактор)
- •11.5.3 Влияние состояния поверхности
- •11.5.4 Влияние пауз
- •11.5.5 Влияние температуры
- •11.6 Практические меры повышения сопротивления усталости
- •Вопросы для самопроверки
- •Лекция 12 Расчет на прочность при колебаниях
- •12.1 Основные понятия
- •12.2 Жесткость системы (коэффициент упругого сопротивления)
- •12.3 Жесткость системы при параллельном соединении упругих
- •12.4 Жесткость системы при последовательном соединении упругих
- •12.5 Свободные колебания систем с одной степенью свободы.
- •12.6 Логарифмический декремент затухания
- •12.7 Коэффициент динамичности
- •12.8 Виброактивность и виброзащита
- •Вопросы для самопроверки
10.2 Формула Эйлера
Рассмотрим решение задачи об устойчивости сжатого стержня. Пусть стержень, оба конца которого закреплены шарнирно, сжат силой Ркр (рис. 10.6). Стержень искривился так, что в сечении z прогиб составил δ. Приближенное дифференциальное уравнение изогнутой оси балки имеет вид:
.
Изгибающий момент в сечении z в изогнутом состоянии равен моменту силы Ркр, но обратного направления, а, следовательно, и знака:
.
Тогда дифференциальное уравнение изогнутой оси балки в направлении минимальной жесткости будет:
.
Обозначая
, (10.1)
получим линейное дифференциальное уравнение второго порядка относительно прогиба δ:
.
Его общее решение имеет вид:
,
где С и D – постоянные интегрирования, определяемые из условий на опорах. На опорах стержня прогиб равен нулю, т.е.
1) при z = 0, = 0;
2) при z = l,
=
0. Подставляя первое условие в уравнение
прогибов получим С = 0, из второго
условия получим
.
Последнее соотношение справедливо при
,
где n – любое целое
число.
Откуда
,
с учетом принятого ранее обозначения
(10.1), получим:
. (10.2)
Минимальное действительное значение критической силы получится при n = 1
. (10.3)
Это и есть формула Эйлера для критической силы.
Прогиб стержня с шарнирным закреплением концов происходит по синусоиде с одной полуволной:
.
10.3 Влияние способов закрепления концов стержня на критическую силу
Формула Эйлера получена для случая шарнирного закрепления концов стержня, когда потеря устойчивости происходит по одной полуволне. Для других случаев закрепления формула Эйлера принимает вид (рис. 10.7):
, (10.4)
где μ – коэффициент приведения длины, зависящий от способа закрепления концов стержня.
Значение коэффициента μ с достаточной для расчетной практики точностью может быть вычислено по формуле:
,
где s – количество полуволн по которым происходит потеря устойчивости при данном способе закрепления концов стержня.
10.4 Пределы применимости формулы Эйлера
Получив значение критической силы, мы можем найти и значение критического напряжения кр, разделив критическую силу Ркр на площадь сечения:
.
Учитывая, что отношение
равно квадрату минимального радиуса
инерции поперечного сечения
,
получим:
, (10.5)
где безразмерный коэффициент называемый гибкостью стержня:
, (10.6)
П
Рисунок
10.8. Гипербола Эйлера
В качестве примера на рисунке 10.8 приведена гипербола Эйлера для стали марки Ст3, для которой модуль упругости Е = 2,1105 МПа. Из графика видно, что при возрастании гибкости стержня критическое напряжение стремиться к нулю и, наоборот, по мере приближения гибкости к нулю критическое напряжение увеличивается.
Однако вывод формулы Эйлера был построен на предположении, что напряжения в стержне не превышают предела пропорциональности:
,
откуда предельное значение гибкости:
. (10.7)
Значит формула Эйлера непригодна для стержней с гибкостью меньшей пр. Например, для стали марки Ст3 формула Эйлера становится непригодной, если:
.
То же значение можно получить, рассматривая график гиперболы Эйлера (рис. 10.8).
Потеря устойчивости может происходить и при напряжениях, превышающих предел пропорциональности. Опытным путем было установлено, что для стержней с гибкостью меньше пр действительные критические напряжения ниже критических напряжений, определенных по формуле Эйлера. Поэтому использование формулы Эйлера для стержней, теряющих устойчивость за пределом пропорциональности, не только принципиально неправильно, но и крайне опасно.
Что бы определить значения критических напряжений для стержней с гибкостью меньше пр проводились многочисленные испытания. На основании результатов экспериментальных исследований Ф. Ясинский предложил эмпирическую формулу, показывающую, что критические напряжения при таких гибкостях меняются по закону, близкому к линейному:
, (10.8)
г
Рисунок
10.9
Например, для стали марки Ст3 значения данных коэффициентов составляют а = 310 МПа; b = 1,14 МПа.
На рис. 10.9 пунктиром показана прямая, уравнение которой соответствует выражению (10.8). Очевидно, что с правой стороны данная прямая ограничивается гиперболой Эйлера.
При некотором значении гибкости (обозначим его 0) величина кр становиться равной предельному напряжению при сжатии: 0 = т для пластичных материалов или 0 = в для хрупких материалов. Стержни, у которых < 0, называют стержни малой гибкости. Их рассчитывают только на прочность.
Таким образом, для стали марки Ст3 график кр = f()состоит из трех частей: гиперболы Эйлера при > 100, наклонной прямой при 60 < < 100 и горизонтальной прямой при < 60. Горизонтальная прямая соответствует пределу текучести.