
- •Лекция 1 Задачи сопротивления материалов. Растяжение и сжатие
- •1.1 Основные формы элементов конструкций
- •1.2 Основные виды деформаций
- •1.3 Основные гипотезы науки о сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опоры и реакции
- •1.6 Внутренние силы. Метод сечений
- •1.7 Напряжение
- •1.8 Растяжение и сжатие
- •1.9 Нормальные напряжения. Условие прочности
- •1.10 Основные типы расчетов на прочность
- •Вопросы для самопроверки
- •Лекция 2 Опытное изучение механических свойств материалов
- •2.1 Опытное изучение свойств материалов при одноосном растяжении
- •2.2 Диаграмма растяжения стали марки Ст3
- •2.3 Наклеп
- •2.4 Диаграммы растяжения других конструкционных материалов
- •2.5 Испытание конструкционных материалов на сжатие
- •2.6 Определение твердости
- •Твердости по Виккерсу
- •2.7 Деформации при растяжении (сжатии)
- •Вопросы для самопроверки
- •Лекция 3 Геометрические характеристики плоских сечений
- •3.1 Статические моменты сечений
- •3.2 Моменты инерции сечений
- •3.3 Зависимость между моментами инерции относительно параллельных осей
- •3.4 Моменты инерции простых сечений
- •3.4.1 Прямоугольник
- •3.4.2 Треугольник
- •3 .4.3 Круг
- •3.4.4 Кольцо
- •3.5 Изменение моментов инерции при
- •3.6 Главные оси и главные моменты инерции
- •3.7 Понятие о радиусе инерции
- •3.8 Моменты сопротивления площади
- •3.9 Моменты инерции сечений сложной формы
- •3 .10 Стандартные прокатные профили
- •4.2 Закон парности касательных напряжений. Главные площадки и главные напряжения
- •4.3 Линейное напряженное состояние Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 4.2, в).
- •4.4 Плоское напряженное состояние
- •4.5 Объемное напряженное состояние
- •5.1 Первая гипотеза прочности: гипотеза наибольших нормальных
- •5.2 Вторая гипотеза прочности: гипотеза наибольших удлинений
- •5.3 Третья гипотеза прочности: гипотеза наибольших касательных
- •5.4 Четвертая гипотеза прочности: гипотеза потенциальной энергии
- •5.5 Определение внутренних сил, напряжений и деформаций при сдвиге
- •5.6 Анализ напряженного состояния при сдвиге
- •5 Рисунок 5.6 Соединение двух листов заклепками .7 Расчет на прочность
- •5.8 Примеры расчета
- •5.8.1 Расчет заклепочного соединения
- •5.8.2 Расчет болтового соединения
- •5.8.3 Расчет сварного соединения
- •5.8.4 Конструирование болта
- •Вопросы для самопроверки
- •Лекция 6 Кручение
- •6.1 Напряжения в поперечном сечении
- •6.2 Условие прочности при кручении вала
- •6.3 Деформации при кручении и условие жесткости
- •6.4 Определение крутящего момента и построение эпюр крутящих моментов
- •6.5 Расчет винтовых цилиндрических пружин с небольшим шагом
- •Вопросы для самопроверки
- •Лекция 7 Плоский изгиб: напряжения и прочность при изгибе
- •7.1 Напряжение при чистом изгибе
- •7.2 Условие прочности при изгибе
- •7.3 Напряжения при поперечном изгибе
- •7.4 Полная проверка прочности балки
- •7.5 Рациональные формы сечений балок
- •7.6. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 8 Плоский изгиб: построение эпюр поперечной силы и изгибающего момента
- •8.1. Построение эпюр поперечной силы и изгибающего момента
- •8.2 Правила проверки эпюр
- •Вопросы для самопроверки
- •Лекция 9 Сложное сопротивление
- •9.1 Сложный и косой изгиб
- •9.2 Внецентренное растяжение (сжатие) прямого бруса
- •9.3 Изгиб с кручением
- •Вопросы для самопроверки
- •Лекция 10 Устойчивость сжатых стержней: Продольный изгиб
- •10.1 Устойчивое и неустойчивое упругое равновесие
- •10.2 Формула Эйлера
- •10.3 Влияние способов закрепления концов стержня на критическую силу
- •10.4 Пределы применимости формулы Эйлера
- •10.5 Расчеты на устойчивость при помощи коэффициентов уменьшения основного допускаемого напряжения
- •10.6 Рациональные формы сечений стержней
- •Вопросы для самопроверки
- •Лекция 11 Динамическое нагружение
- •11.1 Понятие о динамическом действии нагрузки
- •11.2 Удар
- •11.3 Механические свойства материалов при ударе
- •11.4 Напряжения, изменяющиеся во времени. Явление усталости материалов
- •11.5 Влияние конструктивно-технологических факторов на предел усталости
- •11.5.1 Влияние концентрации напряжений
- •11.5.2 Влияние размеров (масштабный фактор)
- •11.5.3 Влияние состояния поверхности
- •11.5.4 Влияние пауз
- •11.5.5 Влияние температуры
- •11.6 Практические меры повышения сопротивления усталости
- •Вопросы для самопроверки
- •Лекция 12 Расчет на прочность при колебаниях
- •12.1 Основные понятия
- •12.2 Жесткость системы (коэффициент упругого сопротивления)
- •12.3 Жесткость системы при параллельном соединении упругих
- •12.4 Жесткость системы при последовательном соединении упругих
- •12.5 Свободные колебания систем с одной степенью свободы.
- •12.6 Логарифмический декремент затухания
- •12.7 Коэффициент динамичности
- •12.8 Виброактивность и виброзащита
- •Вопросы для самопроверки
6.5 Расчет винтовых цилиндрических пружин с небольшим шагом
Пусть имеется винтовая цилиндрическая
пружина с небольшим шагом витков,
изготовленная из круглой проволоки
и растягиваемая осевыми силами Р
(рис. 6.11).
Рисунок
6.11
Вследствие малости шага витков будем считать, что плоскости отдельных витков пружины перпендикулярны к оси пружины. Рассечем виток пружины плоскостью, проходящей через ось пружины. Удалим одну часть пружины и рассмотрим равновесие оставшейся части (рис. 6.11, б). Для равновесия необходимо приложить в центре сечения силу Р, параллельную оси пружины и направленную вниз, и момент РR, где R средний радиус витка пружины. Так как момент РR действует в плоскости сечения, то он вызывает в сечении напряжения кручения (рис. 6.11, в), максимальная величина которых на внешних волокнах равна:
, (6.17)
где d диаметр поперечного сечения проволоки.
Сила Р, действующая в плоскости поперечного сечения, вызывает в нем напряжение сдвига, которое будем считать равномерно распределенным по сечению (рис. 6.11, г). Это напряжение будет равно:
. (6.18)
Для определения суммарных напряжений на внешних волокнах проволоки пружины следует сложить геометрически напряжения 1 и 2. Максимальное напряжение в сечении будет в той точке периферии сечения, в которой направления напряжений 1 и 2 совпадут. Нетрудно видеть, что такой точкой будет точка А.
В этой точке напряжение будет равно:
. (6.19)
Мы рассмотрели растяжение пружины; совершенно такой же результат получился бы при рассмотрении сжатия пружины. При расчете пружин, у которых средний радиус пружины R во много раз больше диаметра d проволоки, из которой она изготовлена, вторым слагаемым, стоящим в скобках, обычно пренебрегают. Для таких пружин формула (6.19) упрощается и принимает вид:
. (6.20)
При расчете пружины, помимо расчета на прочность, часто необходимо бывает определить удлинение или сжатие (осадку) пружины, т.е. ее деформацию . Эта деформация, если принимать во внимание только кручение витков, будет определяться по формуле:
, (6.21)
где D средний диаметр витка пружины; n число витков.
Вопросы для самопроверки
Какой вид нагружения называется кручением?
Что называется валом?
Как вычисляется скручивающий момент, передаваемый шкивом, по заданной мощности и числу оборотов в минуту?
Что такое эпюра крутящего момента и как она строится?
Перечислите гипотезы, принимаемые в теории кручения прямого вала круглого поперечного сечения.
Какие напряжения возникают в поперечном сечении круглого вала при кручении и как они направлены?
Напишите формулу для определения напряжений в поперечном сечении скручиваемого круглого вала.
Какое напряженное состояние возникает в каждой точке круглого вала при кручении?
Напишите формулу для определения относительного и полного угла закручивания круглого вала.
Что называется жесткостью сечения при кручении?
Что называется полярным моментом сопротивления, в каких единицах он выражается и чему равен (для круга и кольца)?