
- •Лекция 1 Задачи сопротивления материалов. Растяжение и сжатие
- •1.1 Основные формы элементов конструкций
- •1.2 Основные виды деформаций
- •1.3 Основные гипотезы науки о сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опоры и реакции
- •1.6 Внутренние силы. Метод сечений
- •1.7 Напряжение
- •1.8 Растяжение и сжатие
- •1.9 Нормальные напряжения. Условие прочности
- •1.10 Основные типы расчетов на прочность
- •Вопросы для самопроверки
- •Лекция 2 Опытное изучение механических свойств материалов
- •2.1 Опытное изучение свойств материалов при одноосном растяжении
- •2.2 Диаграмма растяжения стали марки Ст3
- •2.3 Наклеп
- •2.4 Диаграммы растяжения других конструкционных материалов
- •2.5 Испытание конструкционных материалов на сжатие
- •2.6 Определение твердости
- •Твердости по Виккерсу
- •2.7 Деформации при растяжении (сжатии)
- •Вопросы для самопроверки
- •Лекция 3 Геометрические характеристики плоских сечений
- •3.1 Статические моменты сечений
- •3.2 Моменты инерции сечений
- •3.3 Зависимость между моментами инерции относительно параллельных осей
- •3.4 Моменты инерции простых сечений
- •3.4.1 Прямоугольник
- •3.4.2 Треугольник
- •3 .4.3 Круг
- •3.4.4 Кольцо
- •3.5 Изменение моментов инерции при
- •3.6 Главные оси и главные моменты инерции
- •3.7 Понятие о радиусе инерции
- •3.8 Моменты сопротивления площади
- •3.9 Моменты инерции сечений сложной формы
- •3 .10 Стандартные прокатные профили
- •4.2 Закон парности касательных напряжений. Главные площадки и главные напряжения
- •4.3 Линейное напряженное состояние Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 4.2, в).
- •4.4 Плоское напряженное состояние
- •4.5 Объемное напряженное состояние
- •5.1 Первая гипотеза прочности: гипотеза наибольших нормальных
- •5.2 Вторая гипотеза прочности: гипотеза наибольших удлинений
- •5.3 Третья гипотеза прочности: гипотеза наибольших касательных
- •5.4 Четвертая гипотеза прочности: гипотеза потенциальной энергии
- •5.5 Определение внутренних сил, напряжений и деформаций при сдвиге
- •5.6 Анализ напряженного состояния при сдвиге
- •5 Рисунок 5.6 Соединение двух листов заклепками .7 Расчет на прочность
- •5.8 Примеры расчета
- •5.8.1 Расчет заклепочного соединения
- •5.8.2 Расчет болтового соединения
- •5.8.3 Расчет сварного соединения
- •5.8.4 Конструирование болта
- •Вопросы для самопроверки
- •Лекция 6 Кручение
- •6.1 Напряжения в поперечном сечении
- •6.2 Условие прочности при кручении вала
- •6.3 Деформации при кручении и условие жесткости
- •6.4 Определение крутящего момента и построение эпюр крутящих моментов
- •6.5 Расчет винтовых цилиндрических пружин с небольшим шагом
- •Вопросы для самопроверки
- •Лекция 7 Плоский изгиб: напряжения и прочность при изгибе
- •7.1 Напряжение при чистом изгибе
- •7.2 Условие прочности при изгибе
- •7.3 Напряжения при поперечном изгибе
- •7.4 Полная проверка прочности балки
- •7.5 Рациональные формы сечений балок
- •7.6. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 8 Плоский изгиб: построение эпюр поперечной силы и изгибающего момента
- •8.1. Построение эпюр поперечной силы и изгибающего момента
- •8.2 Правила проверки эпюр
- •Вопросы для самопроверки
- •Лекция 9 Сложное сопротивление
- •9.1 Сложный и косой изгиб
- •9.2 Внецентренное растяжение (сжатие) прямого бруса
- •9.3 Изгиб с кручением
- •Вопросы для самопроверки
- •Лекция 10 Устойчивость сжатых стержней: Продольный изгиб
- •10.1 Устойчивое и неустойчивое упругое равновесие
- •10.2 Формула Эйлера
- •10.3 Влияние способов закрепления концов стержня на критическую силу
- •10.4 Пределы применимости формулы Эйлера
- •10.5 Расчеты на устойчивость при помощи коэффициентов уменьшения основного допускаемого напряжения
- •10.6 Рациональные формы сечений стержней
- •Вопросы для самопроверки
- •Лекция 11 Динамическое нагружение
- •11.1 Понятие о динамическом действии нагрузки
- •11.2 Удар
- •11.3 Механические свойства материалов при ударе
- •11.4 Напряжения, изменяющиеся во времени. Явление усталости материалов
- •11.5 Влияние конструктивно-технологических факторов на предел усталости
- •11.5.1 Влияние концентрации напряжений
- •11.5.2 Влияние размеров (масштабный фактор)
- •11.5.3 Влияние состояния поверхности
- •11.5.4 Влияние пауз
- •11.5.5 Влияние температуры
- •11.6 Практические меры повышения сопротивления усталости
- •Вопросы для самопроверки
- •Лекция 12 Расчет на прочность при колебаниях
- •12.1 Основные понятия
- •12.2 Жесткость системы (коэффициент упругого сопротивления)
- •12.3 Жесткость системы при параллельном соединении упругих
- •12.4 Жесткость системы при последовательном соединении упругих
- •12.5 Свободные колебания систем с одной степенью свободы.
- •12.6 Логарифмический декремент затухания
- •12.7 Коэффициент динамичности
- •12.8 Виброактивность и виброзащита
- •Вопросы для самопроверки
6.2 Условие прочности при кручении вала
При расчете на прочность при кручении необходимо знать максимальные напряжения для сравнения их с допускаемыми напряжениями. Очевидно, что максимальные напряжения при кручении круглого вала будут иметь точки максимально удаленные от оси вала. Т.е. точки с полярной координатой, равной радиусу сечения вала r:
.
Отношение полярного момента инерции J к наибольшему радиусу сечения r называется полярным моментом сопротивления W:
. (6.12)
Тогда условие прочности при кручении будет иметь следующий вид:
. (6.13)
Для сплошного круглого сечения:
, (6.14)
. (6.15)
Как следует из закона парности касательных
напряжений, одновременно с касательными
напряжениями, действующими в плоскости
поперечного сечения вала, имеют место
касательные напряжения в продольных
плоскостях. Они равны по величине парным
напряжениям, но имеют противоположный
знак. Таким образом, все элементы бруса
при кручении находятся в состоянии
чистого сдвига. Так как чистый сдвиг
является частным случаем плоского
напряженного состояния, при котором
то при повороте граней элемента на 45
в новых площадках обнаруживаются только
нормальные напряжения, равные по
величине t (рис. 6.7).
Рассмотрим возможные виды разрушения валов, изготовленных из различных материалов при кручении. Валы из пластичных материалов чаще всего разрушаются по сечению, перпендикулярному к оси вала, под действием касательных напряжений, действующих в этом сечении (рис. 6.8,а). Валы из хрупких материалов, разрушаются по винтовой поверхности наклоненной к оси вала под углом 45, т.е. по направлению действия максимальных растягивающих напряжений (рис. 6.8,б). У деревянных валов первые трещины возникают по образующим цилиндра, так как древесина плохо сопротивляется действию касательных напряжений, направленных вдоль волокон (рис. 6.8,в).
Таким образом, характер разрушения зависит от способности материала вала сопротивляться воздействию нормальных и касательных напряжений. В соответствии с этим, допускаемые касательные напряжения принимаются равным [] = [р] для хрупких материалов и [] = (0,50,6)[] для пластичных материалов.
6.3 Деформации при кручении и условие жесткости
Если Мк = const и GJр = const по всей длине вала, то:
,
где GJр жесткость вала при кручении.
Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания:
.
Для обеспечения требуемой жесткости вала необходимо, чтобы наибольший относительный угол закручивания не превосходил допускаемого:
. (6.16)
Эта формула выражает условие жесткости вала при кручении. Обычно принимается [] = 0,5 на 1 м длины вала.
6.4 Определение крутящего момента и построение эпюр крутящих моментов
Для определения напряжений и деформаций произвольного вала необходимо знать величину крутящих моментов на его отдельных участках.
Крутящий момент Мкр в произвольном сечении вала равен сумме внешних моментов Мк, расположенных по одну сторону сечения.
Крутящий момент Мкр считается положительным, если при наблюдении с торца вдоль оси рассматриваемой части он стремится вращать сечение по часовой стрелке (рис. 6.9).
Рисунок 6.9
Рисунок 6.10
Рассмотрим в качестве примера построение эпюры крутящих моментов для трансмиссионного вала (рис. 6.10).
Разбиваем вал на участки , , .
Проведя произвольное сечение на первом участке:
,
Н·м.
Для второго участка:
,
Н·м.
На третьем участке рассматриваем правую часть от сечения, в котором определяем Мкр:
,
Н·м.
Построенная эпюра показывает, что хотя
к валу и приложен момент
Н·м, наибольший крутящий момент в
сечении равен лишь
Н·м. Эту величину и следует использовать
при расчете на прочность и жесткость.