
- •Лекция 1 Задачи сопротивления материалов. Растяжение и сжатие
- •1.1 Основные формы элементов конструкций
- •1.2 Основные виды деформаций
- •1.3 Основные гипотезы науки о сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опоры и реакции
- •1.6 Внутренние силы. Метод сечений
- •1.7 Напряжение
- •1.8 Растяжение и сжатие
- •1.9 Нормальные напряжения. Условие прочности
- •1.10 Основные типы расчетов на прочность
- •Вопросы для самопроверки
- •Лекция 2 Опытное изучение механических свойств материалов
- •2.1 Опытное изучение свойств материалов при одноосном растяжении
- •2.2 Диаграмма растяжения стали марки Ст3
- •2.3 Наклеп
- •2.4 Диаграммы растяжения других конструкционных материалов
- •2.5 Испытание конструкционных материалов на сжатие
- •2.6 Определение твердости
- •Твердости по Виккерсу
- •2.7 Деформации при растяжении (сжатии)
- •Вопросы для самопроверки
- •Лекция 3 Геометрические характеристики плоских сечений
- •3.1 Статические моменты сечений
- •3.2 Моменты инерции сечений
- •3.3 Зависимость между моментами инерции относительно параллельных осей
- •3.4 Моменты инерции простых сечений
- •3.4.1 Прямоугольник
- •3.4.2 Треугольник
- •3 .4.3 Круг
- •3.4.4 Кольцо
- •3.5 Изменение моментов инерции при
- •3.6 Главные оси и главные моменты инерции
- •3.7 Понятие о радиусе инерции
- •3.8 Моменты сопротивления площади
- •3.9 Моменты инерции сечений сложной формы
- •3 .10 Стандартные прокатные профили
- •4.2 Закон парности касательных напряжений. Главные площадки и главные напряжения
- •4.3 Линейное напряженное состояние Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 4.2, в).
- •4.4 Плоское напряженное состояние
- •4.5 Объемное напряженное состояние
- •5.1 Первая гипотеза прочности: гипотеза наибольших нормальных
- •5.2 Вторая гипотеза прочности: гипотеза наибольших удлинений
- •5.3 Третья гипотеза прочности: гипотеза наибольших касательных
- •5.4 Четвертая гипотеза прочности: гипотеза потенциальной энергии
- •5.5 Определение внутренних сил, напряжений и деформаций при сдвиге
- •5.6 Анализ напряженного состояния при сдвиге
- •5 Рисунок 5.6 Соединение двух листов заклепками .7 Расчет на прочность
- •5.8 Примеры расчета
- •5.8.1 Расчет заклепочного соединения
- •5.8.2 Расчет болтового соединения
- •5.8.3 Расчет сварного соединения
- •5.8.4 Конструирование болта
- •Вопросы для самопроверки
- •Лекция 6 Кручение
- •6.1 Напряжения в поперечном сечении
- •6.2 Условие прочности при кручении вала
- •6.3 Деформации при кручении и условие жесткости
- •6.4 Определение крутящего момента и построение эпюр крутящих моментов
- •6.5 Расчет винтовых цилиндрических пружин с небольшим шагом
- •Вопросы для самопроверки
- •Лекция 7 Плоский изгиб: напряжения и прочность при изгибе
- •7.1 Напряжение при чистом изгибе
- •7.2 Условие прочности при изгибе
- •7.3 Напряжения при поперечном изгибе
- •7.4 Полная проверка прочности балки
- •7.5 Рациональные формы сечений балок
- •7.6. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 8 Плоский изгиб: построение эпюр поперечной силы и изгибающего момента
- •8.1. Построение эпюр поперечной силы и изгибающего момента
- •8.2 Правила проверки эпюр
- •Вопросы для самопроверки
- •Лекция 9 Сложное сопротивление
- •9.1 Сложный и косой изгиб
- •9.2 Внецентренное растяжение (сжатие) прямого бруса
- •9.3 Изгиб с кручением
- •Вопросы для самопроверки
- •Лекция 10 Устойчивость сжатых стержней: Продольный изгиб
- •10.1 Устойчивое и неустойчивое упругое равновесие
- •10.2 Формула Эйлера
- •10.3 Влияние способов закрепления концов стержня на критическую силу
- •10.4 Пределы применимости формулы Эйлера
- •10.5 Расчеты на устойчивость при помощи коэффициентов уменьшения основного допускаемого напряжения
- •10.6 Рациональные формы сечений стержней
- •Вопросы для самопроверки
- •Лекция 11 Динамическое нагружение
- •11.1 Понятие о динамическом действии нагрузки
- •11.2 Удар
- •11.3 Механические свойства материалов при ударе
- •11.4 Напряжения, изменяющиеся во времени. Явление усталости материалов
- •11.5 Влияние конструктивно-технологических факторов на предел усталости
- •11.5.1 Влияние концентрации напряжений
- •11.5.2 Влияние размеров (масштабный фактор)
- •11.5.3 Влияние состояния поверхности
- •11.5.4 Влияние пауз
- •11.5.5 Влияние температуры
- •11.6 Практические меры повышения сопротивления усталости
- •Вопросы для самопроверки
- •Лекция 12 Расчет на прочность при колебаниях
- •12.1 Основные понятия
- •12.2 Жесткость системы (коэффициент упругого сопротивления)
- •12.3 Жесткость системы при параллельном соединении упругих
- •12.4 Жесткость системы при последовательном соединении упругих
- •12.5 Свободные колебания систем с одной степенью свободы.
- •12.6 Логарифмический декремент затухания
- •12.7 Коэффициент динамичности
- •12.8 Виброактивность и виброзащита
- •Вопросы для самопроверки
5.6 Анализ напряженного состояния при сдвиге
Рисунок
5.5
Напряженное
состояние чистого
сдвига
Если по граням элемента действуют только касательные напряжения (рис. 5.5), то такой вид напряженного состояния называется чистым сдвигом. Площадки, по которым действуют только касательные напряжения, называются площадками чистого сдвига.
Анализ показывает, что при чистом сдвиге возникает плоское напряженное состояние. Главные площадки наклонены под углом 45° к направлению площадок чистого сдвига (tg20 = ).
5 Рисунок 5.6 Соединение двух листов заклепками .7 Расчет на прочность
при сдвиге
Условие прочности при сдвиге имеет вид:
, (5.13)
где [] допускаемое касательное напряжение, которое в первом приближении принимается равным [] = (0,5…0,6)[].
5.8 Примеры расчета
5.8.1 Расчет заклепочного соединения
На рис. 5.6 показано соединение двух листов заклепками (соединение внахлест), которое разрушается в результате перерезывания заклепок по линии соприкосновения листов. Если разрушение каждой заклепки происходит по одной плоскости среза, то заклепочное соединение называется односрезным, если по двум плоскостям, то соединение называется двухсрезным и т.д.
Для упрощения задачи принимаем, что по плоскостям среза действуют только касательные напряжения, которые распределяются по поверхности среза равномерно, а также что при действии статической нагрузки можно принять поперечную силу в каждой заклепке равной:
, (5.14)
где Р сила, действующая на соединение; п число заклепок.
Условие прочности заклепок на срез:
, (5.15)
где F = d 2/4 площадь поперечного сечения заклепки диаметром d; [] = (0,60,8)[] допускаемое касательное напряжение.
При двухсрезном или многосрезном заклепочном соединении вместо п в формулу (5.15) следует подставлять общее число срезов заклепок, расположенных по одну сторону стыка.
З
Рисунок
5.7
Распределение
напряжений смятия
,
где t толщина соединяемых листов.
Условие прочности на смятие имеет вид:
, (5.16)
где [см] допускаемое напряжение на смятие, [см] = (22,5)[].
В случае склепывания внахлест двух листов различной толщины принимают t = tmin.
Условие прочности листа на разрыв:
, (5.17)
где F1 площадь сечения листа по ряду заклепок в направлении, перпендикулярном линии действия силы Р; п1 число заклепок в этом сечении; b ширина листа (см. рис. 5.6).
5.8.2 Расчет болтового соединения
В качестве примера рассмотрим расчет болтового соединения, приведенного на рис. 5.8.
Рисунок 5.8
Силы Р стремятся сдвинуть листы относительно друг друга. Этому препятствует болт, на который со стороны каждого листа передаются распределенные по контактной поверхности силы, равнодействующие которых равны Р. Усилия стремятся срезать болт в плоскости раздела листов m n, так как в этом сечении действует максимальная поперечная сила Q = Р. Считая, что касательные напряжения распределены равномерно, получим:
. (5.18)
Таким образом, условие прочности болта на срез принимает вид:
. (5.19)
Отсюда можно найти диаметр болта:
. (5.20)
При расчете болтовых соединений следует учитывать, что нагрузки, приложенные к элементам соединений, помимо среза вызывают смятие контактирующих поверхностей. Под смятием понимают пластическую деформацию, возникающую на поверхностях контакта.
Максимальное напряжение смятия на цилиндрических поверхностях:
,
где Fсм площадь проекции поверхности контакта на диаметральную плоскость (рис. 5.8,б):
. (5.21)
Условие прочности на смятие имеет вид:
. (5.22)
Допускаемые напряжения на смятие
устанавливают опытным путем и принимают
равным
.
На основании зависимости (5.22) получим:
. (5.23)
Чтобы были удовлетворены условия прочности на срез и на смятие, из двух найденных диаметров следует взять больший, округлив его до стандартного значения.