
- •Лекция 1 Задачи сопротивления материалов. Растяжение и сжатие
- •1.1 Основные формы элементов конструкций
- •1.2 Основные виды деформаций
- •1.3 Основные гипотезы науки о сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опоры и реакции
- •1.6 Внутренние силы. Метод сечений
- •1.7 Напряжение
- •1.8 Растяжение и сжатие
- •1.9 Нормальные напряжения. Условие прочности
- •1.10 Основные типы расчетов на прочность
- •Вопросы для самопроверки
- •Лекция 2 Опытное изучение механических свойств материалов
- •2.1 Опытное изучение свойств материалов при одноосном растяжении
- •2.2 Диаграмма растяжения стали марки Ст3
- •2.3 Наклеп
- •2.4 Диаграммы растяжения других конструкционных материалов
- •2.5 Испытание конструкционных материалов на сжатие
- •2.6 Определение твердости
- •Твердости по Виккерсу
- •2.7 Деформации при растяжении (сжатии)
- •Вопросы для самопроверки
- •Лекция 3 Геометрические характеристики плоских сечений
- •3.1 Статические моменты сечений
- •3.2 Моменты инерции сечений
- •3.3 Зависимость между моментами инерции относительно параллельных осей
- •3.4 Моменты инерции простых сечений
- •3.4.1 Прямоугольник
- •3.4.2 Треугольник
- •3 .4.3 Круг
- •3.4.4 Кольцо
- •3.5 Изменение моментов инерции при
- •3.6 Главные оси и главные моменты инерции
- •3.7 Понятие о радиусе инерции
- •3.8 Моменты сопротивления площади
- •3.9 Моменты инерции сечений сложной формы
- •3 .10 Стандартные прокатные профили
- •4.2 Закон парности касательных напряжений. Главные площадки и главные напряжения
- •4.3 Линейное напряженное состояние Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 4.2, в).
- •4.4 Плоское напряженное состояние
- •4.5 Объемное напряженное состояние
- •5.1 Первая гипотеза прочности: гипотеза наибольших нормальных
- •5.2 Вторая гипотеза прочности: гипотеза наибольших удлинений
- •5.3 Третья гипотеза прочности: гипотеза наибольших касательных
- •5.4 Четвертая гипотеза прочности: гипотеза потенциальной энергии
- •5.5 Определение внутренних сил, напряжений и деформаций при сдвиге
- •5.6 Анализ напряженного состояния при сдвиге
- •5 Рисунок 5.6 Соединение двух листов заклепками .7 Расчет на прочность
- •5.8 Примеры расчета
- •5.8.1 Расчет заклепочного соединения
- •5.8.2 Расчет болтового соединения
- •5.8.3 Расчет сварного соединения
- •5.8.4 Конструирование болта
- •Вопросы для самопроверки
- •Лекция 6 Кручение
- •6.1 Напряжения в поперечном сечении
- •6.2 Условие прочности при кручении вала
- •6.3 Деформации при кручении и условие жесткости
- •6.4 Определение крутящего момента и построение эпюр крутящих моментов
- •6.5 Расчет винтовых цилиндрических пружин с небольшим шагом
- •Вопросы для самопроверки
- •Лекция 7 Плоский изгиб: напряжения и прочность при изгибе
- •7.1 Напряжение при чистом изгибе
- •7.2 Условие прочности при изгибе
- •7.3 Напряжения при поперечном изгибе
- •7.4 Полная проверка прочности балки
- •7.5 Рациональные формы сечений балок
- •7.6. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 8 Плоский изгиб: построение эпюр поперечной силы и изгибающего момента
- •8.1. Построение эпюр поперечной силы и изгибающего момента
- •8.2 Правила проверки эпюр
- •Вопросы для самопроверки
- •Лекция 9 Сложное сопротивление
- •9.1 Сложный и косой изгиб
- •9.2 Внецентренное растяжение (сжатие) прямого бруса
- •9.3 Изгиб с кручением
- •Вопросы для самопроверки
- •Лекция 10 Устойчивость сжатых стержней: Продольный изгиб
- •10.1 Устойчивое и неустойчивое упругое равновесие
- •10.2 Формула Эйлера
- •10.3 Влияние способов закрепления концов стержня на критическую силу
- •10.4 Пределы применимости формулы Эйлера
- •10.5 Расчеты на устойчивость при помощи коэффициентов уменьшения основного допускаемого напряжения
- •10.6 Рациональные формы сечений стержней
- •Вопросы для самопроверки
- •Лекция 11 Динамическое нагружение
- •11.1 Понятие о динамическом действии нагрузки
- •11.2 Удар
- •11.3 Механические свойства материалов при ударе
- •11.4 Напряжения, изменяющиеся во времени. Явление усталости материалов
- •11.5 Влияние конструктивно-технологических факторов на предел усталости
- •11.5.1 Влияние концентрации напряжений
- •11.5.2 Влияние размеров (масштабный фактор)
- •11.5.3 Влияние состояния поверхности
- •11.5.4 Влияние пауз
- •11.5.5 Влияние температуры
- •11.6 Практические меры повышения сопротивления усталости
- •Вопросы для самопроверки
- •Лекция 12 Расчет на прочность при колебаниях
- •12.1 Основные понятия
- •12.2 Жесткость системы (коэффициент упругого сопротивления)
- •12.3 Жесткость системы при параллельном соединении упругих
- •12.4 Жесткость системы при последовательном соединении упругих
- •12.5 Свободные колебания систем с одной степенью свободы.
- •12.6 Логарифмический декремент затухания
- •12.7 Коэффициент динамичности
- •12.8 Виброактивность и виброзащита
- •Вопросы для самопроверки
3.7 Понятие о радиусе инерции
Момент инерции фигуры относительно какой-либо оси можно представить в виде произведения площади фигуры на квадрат некоторой величины, называемой радиусом инерции:
(3.24)
где
радиус инерции
относительно оси х.
Из выражения (3.24) следует, что
. (3.25)
Аналогично радиус инерции площади
сечения относительно оси
:
. (3.26)
Главным центральным осям инерции соответствуют главные радиусы инерции:
,
. (3.27)
3.8 Моменты сопротивления площади
Осевым моментом сопротивления площади сечения F относительно главной центральной оси называется отношение момента инерции площади относительно этой же оси к расстоянию до наиболее удаленной точки от этой оси:
. (3.28)
Момент сопротивления измеряется в м3.
Отношение полярного момента инерции площади сечения к наибольшему радиусу вектору этой площади, называется полярным моментом сопротивления:
. (3.29)
Для площади прямоугольника:
,
.
Для площади круга:
,
,
.
3.9 Моменты инерции сечений сложной формы
Момент инерции сечения сложной формы относительно некоторой оси равен сумме моментов инерций его составных частей относительно той же оси:
, (3.30)
что непосредственно следует из свойств определенного интеграла. Таким образом, для вычисления момента инерции сложной фигуры необходимо разбить её на ряд простых фигур, вычислить моменты инерции этих фигур, а затем просуммировать их.
Пусть требуется определить моменты инерции сложной фигуры относительно осей X, Y (рис. 3.11). При вычислении моментов инерции сложных сечений их нужно разбить на простые части, моменты инерции которых известны.
И
з
основного свойства интеграла суммы
следует, что момент инерции сложной
фигуры равен сумме моментов инерции
составных ее частей:
;
.
Если в сечении имеется отверстие (рис. 3.12), то его удобно считать фигурой с отрицательной площадью:
;
.
3 .10 Стандартные прокатные профили
Нашей промышленностью выпускаются стандартные прокатные профили (рис. 3.13) (двутавр, швеллер, уголок равнобокий, уголок неравнобокий), которые могут быть использованы как готовые элементы конструкций (балки, стойки, элементы ферм и т.д.). Размеры прокатных профилей стандартизированы и сведены в таблицы сортаментов прокатной стали, которые приводятся в приложениях почти всех учебников и сборников задач по сопротивлению материалов. В этих таблицах приводятся все размеры сечений и основные геометрические характеристики прокатных профилей в соответствии с их номером.
|
|
|
|
двутавр |
швеллер |
Равнобокий уголок |
неравнобокий уголок |
Рисунок 3.13
Вопросы для самопроверки
Геометрические характеристики плоских сечений.
Центробежные моменты, моменты инерции, моменты сопротивления.
Статические моменты сечений.
Зависимость между моментами инерции относительно параллельных осей.
Изменение моментов инерции сечения при повороте осей координат.
Главные оси инерции и главные моменты инерции.
Моменты инерции простых сечений.
Лекция 4 Основы теории напряженного состояния
Напряжения в точке, тензор напряжений; закон парности касательных напряжений, главные площадки и главные напряжения; линейное, плоское и объемное напряженные состояния; обобщенный закон Гука
4.1 Напряжения в точке. Тензор напряжений
Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечного малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 4.1.
С
Рисунок
4.7
Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действуют девять компонентов напряжения. Запишем их в виде следующей квадратной матрицы:
,
где в первой, второй и третьей строках расположены составляющие напряжений соответственно на площадках, перпендикулярных к осям х, у, z. Эта совокупность напряжений называется тензором напряжений.
Нормальное напряжение считается положительным, если оно направлено от площадки. Касательное напряжение считается положительными, если изображающий его вектор стремится вращать параллелепипед по часовой стрелки относительно любой точке, лежащей внутри параллелепипеда. Отрицательными считаются напряжения обратных направлений.