- •Хаин Виктор Ефимович, ломизе Михаил Григорьевич Геотектоника с основами геодинамики
- •От себя:
- •Оглавление
- •Часть I вводная глава 1 предмет, методы и основные этапы развития геотектоники
- •1.1. Предмет геотектоники и ее подразделения
- •1.2. Методы геотектоники
- •1.3. Основные этапы развития геотектоники
- •Глава 2 общие представления о тектоносфере
- •2.1. Источники сведений о составе и строении тектоносферы
- •2.2. Общие представления о составе и строении тектоносферы
- •Глава 3 концепция тектоники литосферных плит
- •Часть II современные тектонические процессы глава 4 современные тектонические движения, методы и результаты их изучения
- •4.1. Методы изучения вертикальных движений
- •4.2. Методы изучения горизонтальных движений
- •4.3. Изучение современного напряженного состояния земной коры и литосферы
- •Глава 5 рифтогенез
- •5.1. Глобальная система рифтовых зон
- •5.2. Континентальный рифтогенез
- •5.3. Океанский рифтогенез (спрединг)
- •5.4. Активный и пассивный рифтогенез
- •Глава 6 субдукция, обдукция и коллизия (тектонические процессы на конвергентных границах литосферных плит)
- •6.1. Субдукция: ее проявление, режимы и геологические последствия
- •6.1.1. Выражение зон субдукции в рельефе
- •6.1.2. Тектоническое положение и основные типы зон субдукции
- •6.1.3. Геофизическое выражение зон субдукции
- •6.1.4. Зоны Беньофа
- •6.1.5. Геологическое выражение зон субдукции
- •6.1.6. Кинематика субдукции
- •6.1.7. Тектонические режимы субдукции
- •6.1.8. Сегментация зон субдукции
- •6.2. Обдукция
- •6.3. Коллизия
- •Глава 7 внутриплитные тектонические процессы
- •7.1. Современные проявления внутриплитной тектонической и магматической активности
- •7.2. Основные типы внутриплитных дислокаций
- •7.3. Кольцевые структуры и их природа
- •Часть III строение и развитие главных структурных единиц литосферы глава 8 главные структурные единицы литосферы
- •Глава 9 методы изучения тектонических движений и деформаций геологического прошлого (палеотектоническии и неотектоническии анализы)
- •9.1. Анализ фаций и мощностей. Объемный метод
- •9.2. Анализ формаций. Литодинамические комплексы
- •9.3. Анализ перерывов и несогласий
- •9.4. Палеомагнитные методы
- •9.5. Структурно-геоморфологические методы (неотектонический анализ)
- •Глава 10 внутренние области океанов
- •10.1. Срединно-океанские хребты
- •10.2. Трансформные разломы
- •10.3. Абиссальные равнины
- •10.4. Внутриплитные возвышенности и хребты
- •10.5. Микроконтиненты
- •10.6. Возраст и происхождение океанов
- •Глава 11 области перехода континент/океан
- •11.1. Строение и развитие пассивных окраин
- •11.2. Активные окраины и их развитие
- •11.3. Трансформные окраины
- •Глава 12 складчатые пояса континентов
- •12.1. Общая характеристика складчатых поясов
- •12.2. Внутреннее строение складчатых поясов
- •12.3. Развитие складчатых поясов
- •Глава 13 континентальные платформы
- •13.1. Общая характеристика
- •13.2. Внутреннее строение фундамента древних платформ
- •3.3. Структурные элементы поверхности фундамента и осадочного чехла платформ
- •13.4. Стадии развития платформ
- •13.5. Осадочные формации плитного чехла и эволюция структурного плана платформ
- •13.6. Платформенный магматизм
- •Глава 14 области внутриконтинентального орогенеза
- •14.1. Общая характеристика
- •14.2. Магматизм внутриконтинентальных орогенов
- •14.3. Внутриконтинентальный орогенез — распределение во времени
- •Часть IV общие вопросы формирования и эволюции структуры земной коры глава 15 коровые складчато-разрывные дислокации: их происхождение и развитие
- •15.1. Кинематические и динамические условия образования складок
- •5.2. Геологические условия образования складок
- •15.2.1. Эндогенная складчатость
- •5.2.2. Экзогенная складчатость
- •15.3. Коровые разрывы
- •15.4. Тектонические покровы (шарьяжи)
- •15.5. Развитие тектонических деформаций во времени
- •Глава 16 принципы тектонического районирования и тектонические карты
- •16.1. Этапы развития тектонической картографии
- •16.2. Тектонические карты, задачи и методы их составления
- •16.3. Специальные тектонические карты
- •Глава 17 основные этапы и общие закономерности развития земной коры
- •17.1. Основные этапы развития земной коры.
- •17.2. Основные закономерности эволюции Земли и земной коры
- •Глава 18 основные источники энергии и глубинные механизмы тектонических процессов
- •18.1. Источники энергии глубинных геологических процессов
- •18.2. Реологические свойства коры и мантии, литосферы и астеносферы
- •18.3. Конвекция в мантии Земли
- •18.4. Современные представления о механизме тектонических движений и деформаций
- •Заключение
6.1.2. Тектоническое положение и основные типы зон субдукции
Современное размещение зон субдукции весьма закономерно (см. рис. 5.1.). Большинство из них приурочено к периферии Тихого океана. Субдукционные системы Малых и Южных (Скотия) Антил, хотя и находятся в Атлантике, тесно связаны своим происхождением с эволюцией структур тихоокеанского обрамления, с их изгибом и проникновением далеко на восток в свободных пространствах, раскрывшихся между континентами Северной Америки, Южной Америки и Антарктиды. Более самостоятельна Зондская система субдукции, тем не менее и она тяготеет к структурному ансамблю Тихоокеанского кольца. Таким образом, в настоящее время все зоны субдукции, получившие полное и характерное развитие, так или иначе связаны с этим наиболее мощным поясом современной тектонической активности. Лишь несколько сравнительно небольших, малоглубинных и специфических по ряду характеристик зон субдукции (таких, как Эгейская, Эоловая) развиваются в Средиземноморском бассейне — этом реликте мезозойско-кайнозойского океана Тетис. Северную окраину Тетиса наследует и зона субдукции Мекран.
Р
ис.
6.4. Главные тектонические типы зон
субдукции и их латеральные структурные
ряды, по М.Г. Ломизе, с использованием
схем Д. Карига, У. Дикинсона, С. Уеды.
I—III
— окраинно-материковые зоны субдукции:
андский, зондский и японский тектонотипы;
IV — океанская зона субдукции, марианский
тектонотип;
а — континентальная
литосфера, б — океанская литосфера, в
— островодужные вулканиты, г —
вулканогенно-осадочные формации, д —
откат перегиба субдуцирующей плиты, е
— место возможного формирования
аккреционной призмы.
В латеральных
структурных рядах: 1 — краевые валы; 2 —
глубоководные желоба; 3 — невулканические
островные дуги, подводные террасы или
береговые хребты; 4 — преддуговые или
фронтальные прогибы; 5 — вулканические
островные дуги (энсиалическне и
энсиматические), а в орогенах андского
типа — главный хребет и его вулканические
цепи: 6 — тыловая система взбросово-надвиговых
деформаций; в — задуговые и междуговые
бассейны, а также тыловые (предгорные)
прогибы орогенов андского типа: 7,9 —
остаточные островные дуги; 8 — отмерший
междуговой бассейн
Историческая геология позволяет понять указанную выше закономерность современного размещения зон субдукции. В начале мезозоя они почти полностью обрамляли единый в то время суперконтинент Пангея, под который субдуцировала литосфера окружавшего его океана Панталасса (см. рис. 11.1). В дальнейшем, по мере последовательного распада суперконтинента и центробежного перемещения его фрагментов, зоны субдукции продолжили развиваться перед фронтом движущихся континентальных масс. Эти процессы не прекращаются до наших дней. Поскольку современный Тихий океан — это пространство, оставшееся от Панталассы, то оказавшиеся на его обрамлении зоны субдукции представляют собой как бы фрагменты субдукционного кольца, опоясывавшего Пангею. В настоящее время они находятся приблизительно на линии большого круга земной сферы, а с ходом геологического времени, по мере дальнейшего сокращения площади Тихого океана, вероятно, будут еще ближе сходиться на его обрамлении.
Зоны субдукции Средиземноморья не имеют сопряженных с ними систем спрединга и, судя по всему, поддерживаются закрытием океана Тетис — этого крупного ответвления Панталассы. Характер взаимодействующих участков литосферы определяет (различия между двумя главными тектоническими типами зон субдукции: окраинно-материковым (андским) и океанским (марианским). Первый формируется там, где океанская литосфера субдуцирует под континент, второй — при взаимодействии двух участков океанской литосферы.
Строение и субдукционный режим окраинно-материковых зон разнообразны и зависят от многих условий. Для наиболее протяженной из них Андской (около 8 тыс. км) характерны пологая субдукция молодой океанской литосферы, господство сжимающих напряжений и горообразование на континентальном крыле (рис. 6.4, I). Зондскую дугу отличает отсутствие таких напряжений, что делает возможным утонение континентальной коры, поверхность которой находится в основном ниже уровня океана; под нее субдуцирует более древняя океанская литосфера, уходящая на глубину под более крутым утлом (рис. 6.4,II).
Разновидностью окраинно-материкового можно считать и японский тип зоны субдукции, представление о котором дает пересечение, проходящее через Японский желоб — Хонсю—Японское море (рис. 6.4,III). Для него характерно наличие краевого морского бассейна с новообразованной корой океанского или субокеанского типа. Геолого-геофизические и палеомагнитные данные позволяют проследить раскрытие краевого Японского моря по мере того, как от азиатской окраины отчленялась полоса континентальной литосферы. Постепенно изгибаясь, она превратилась в Японскую островную дугу с сиалическим континентальным основанием, т.е. в энсиалическую островную дугу. Ниже мы вернемся к вопросу о том, почему в одних случаях развитие окраинно-материковой зоны субдукции приводит к раскрытию краевого моря, а в других этого не происходит.
При образовании зон субдукции океанского (марианского) типа более древняя (и поэтому более мощная и тяжелая) океанская литосфера субдуцирует под более молодую (рис. 6.4, IV), на краю которой (на симатическом основании) образуется энсиматическая островная дуга. Примером таких зон субдукции, наряду с Марианской, могут служить такие островодужные системы, как Идзу-Бонинская, Тонга — Кермадек, Южных Антил. Ни одна из подобных зон субдукции, по крайней мере в новейшее время, не формировалась посреди океана: они тяготеют к сложному парагенезу структур океанского обрамления.
Рис.
6.5. «Альпинотипная субдукция»
(«А-субдукция», «континентальная
субдукция») как элемент структурного
ансамбля над окраинно-материковой
Андской зоной субдукции в Северном
Перу, по Ж. Буржуа и Д. Жанжу (1981). ОС —
«океанская субдукция»; КС — «континентальная
субдукция»; 1 — докембрийско-палеозойский
цоколь; 2 — лежащие на нем комплексы
палеозоя и мезозоя; 3 — гранитоидные
батолиты; 4 — заполнение кайнозойских
впадин; 5 — океанская литосфера
Во всех рассмотренных случаях субдуцирует литосфера океанского типа. Иначе протекает процесс там, где к конвергентной границе с обеих сторон подходит континентальная литосфера. Она включает в себя мощную и низкоплотностную земную кору. Поэтому конвергенция развивается здесь как столкновение, коллизия, которая сопровождается тектоническим расслаиванием и сложной деформацией верхней части литосферы. Многие зоны коллизии асимметричны, в них происходят выраженные сейсмологически поддвиг и надвиг пластин континентальной коры. Некоторые исследователи рассматривают подобное тектоническое взаимодействие как особую разновидность субдукции, которую А. Балли предложил называть альпинотипной субдукцией (А-субдукцией). Такова современная тектоническая активность Гималаев на стыке континентальных плит Евразии и Индостана. Эта категория конвергентных границ будет рассмотрена нами как разновидность коллизии.
Однако в большинстве случаев А-субдукция имеет иную тектоническую природу и, как отмечал А. Балли, связана с направленной навстречу более глубинной субдукцией океанской литосферы. Она развивается в тылу окраинно-материковых горных сооружений там, где субдуцирующая со стороны океана литосфера способна оказать на континент давление, порождающее взбросы и надвиги, направленные от океана. Примером могут служить надвиги Субандийских цепей, Скалистых гор. Не исключено, что под влиянием глубинной субдукции происходит и некоторое затягивание вниз континентального автохтона таких сопряженных с ней надвигов (рис. 6.5). Подобные зоны А-субдукции, размещаясь над мощными окраинно-материковыми зонами субдукции, скорее всего вторичны по отношению к ним. Они вписываются в структурный парагенез континентальной окраины.
