- •1.Белки,строение,биологическая роль
- •2.Аминокислоты,строение,классификация.Биологическая роль.
- •3.Белки,свойства белков(денатурация,нативность,эзоэлектрическая точка,белки-коллоиды).Доменная структура белков.Белки-шапероны.
- •4.Первичная,вторичная структура белков.Связи,участвующие в их образовании.Серповидно-клеточная анемия.
- •5.Третичная , четвертичная структура. Связи,участвующие в их образовании
- •6.Азотистый баланс.Полноценные и неполноценные белки.Биологическая ценность белка.
- •7.Матричный биосинтез белков.Репликация.
- •8.Матричный биосинтез белков.Трансляция.
- •9.Матричный биосинтез белков.Транскрипция.
- •10.Сложные белки.Классификация.Гемопротеины.Строение гемма
- •11. Нуклеиновые кислоты. Строение и биологическая роль
- •18. Гликоген. Синтез гликогена
- •19. Гликолиз,значение процесса для организма,1 этап
- •20 Гликолиз,значение процесса для организма,2этап
- •21. Цикл Кребса. Биологическое значение
- •22 Тканевое дыхание
- •23 Липиды и липоиды.Биологическая роль в организме.Классификация
- •26 Обмен липидов в жкт
- •28. Патологии липидного обмена
- •30.Липопротеины. Строение, классификация. Биологическая роль.
- •31.Биосинтез триглицеридов и фосфолипидов.
- •32. Ферменты. Химическая природа и биологическое значение. Классификация и номенклатура.
- •33.Применение ферментов в медицинской практике.
- •34. Механизм действия ферментов. Изоферменты, мультиферментные системы.
- •35. Переваривание белков в желудочно-кишечном тракте.
- •36. Превращение аминокислот в толстом кишечнике.
- •37. Всасывание продуктов распада белков. Судьба всосавшихся аминокислот.
- •38.Дезаминирование. Биологическое значение. Примеры.
- •39.Обезвреживание аммиака в организме. Орнитиновый цикл образования мочевины.
- •40.Декарбоксилирование. Биогенные амины. Биологическое значение. Примеры.
- •41. Трансаминирование.Биологическое значение.Примеры
- •42. Патологии азотистого обмена(триптофана)
- •44. Патологии азотистого обмена аминокислот с разветвлённой углеродной цепью
- •45. Клеточные мембраны, строение, биологическое значение
- •46.Химический состав клеточных мембран.
- •48. Гормоны,биологическая роль,классификация
- •49. Механизмы действия гормонов
- •50.Гормоны мозгового слоя надпочечников
- •51 Гормоны коркового слоя надпочечников
- •52. Инсулин,глюкагон,строение биологическое действие
- •53. Сахарный диабет.
- •54. Гормоны щитовидной железы
- •55. Гормоны паращитовидной железы
- •56. Гонадотропные гормоны
- •57. Гормоны гипофиза. Актг,ттг
- •58.Гормоны гипофиза. Пролактин,вазопрессин,окситоцин
- •59. Эйкозаноиды: простогландины,тромбоксаны.
- •60. Эйкозаноиды.Лейкотриены.Синтез.Биологическая роль
- •16. Витамины-коферменты.
60. Эйкозаноиды.Лейкотриены.Синтез.Биологическая роль
Эйкозаноиды — окисленные производные полиненасыщенных жирных кислот — эйкозотриеновой (С20:3), арахидоновой (эйкозотетраеновая, С20:4), тимнодоновой (эйкозопентаеновая, С20:5). Пищевыми источниками полиненасыщенных жирных кислот являются растительные масла, рыбий жир и препараты омега-3-жирных кислот.
Депонироваться эйкозаноиды не могут, разрушаются в течение нескольких секунд, поэтому клетка должна синтезировать их постоянно из поступающих в неё соответствующих жирных кислот.
Выделяют три основные группы эйкозаноидов:
- простагландины (Различают 2 класса первичных простагландинов: растворимые в эфире простагланди-ны PGE и растворимые в фосфатном буфере простагландины PGF)
- лейкотриены
- тромбоксаны
Второй путь превращения арахидоновой кислоты – липоксигеназный путь (рис. 8.4) – отличается тем, что дает начало синтезу еще одного класса биологически активных веществ – лейкотриенов. Характерная особенность структуры лейкотриенов заключается в том, что она не содержит циклической структуры, хотя лейкотриены, как и простаноиды, построены из 20 углеродных атомов. В структуре лейкотриенов содержатся четыре двойные связи, некоторые из них образуют пептидолипидные комплексы с глутатионом или с его составными частями (лейкотриен D может далее превращаться в лейкотриен Е, теряя остаток глицина). Основные биологические эффекты лейкотриенов связаны с воспалительными процессами, аллергическими и иммунными реакциями, анафилаксией и деятельностью гладких мышц. В частности, лейкотриены способствуют сокращению гладкой мускулатуры дыхательных путей, пищеварительного тракта, регулируют тонус сосудов (оказывают сосудосуживающее действие) и стимулируют сокращение коронарных артерий. Катаболические пути лейкотриенов окончательно не установлены.
13.Вторичная структура ДНК, Типы (А,В,Z) Принцип комплиментарности, правило Чаргаффа Вторичная структура ДНК. Молекула ДНК в клетках прокариот и эукариот присутствует только в виде двойной спирали, т.е. состоит из двух полинуклеотидных цепей. Эти цепи комплементарны, антипараллельны и закручены в спираль вокруг общей оси. На один виток спирали приходится 10 пар оснований, диаметр спирали составляет 2 нм. Сахарофосфатный остов расположен снаружи (заряжен отрицательно), азотистые основания находятся внутри спирали и располагаются стопкой друг над другом. Эта модель строения ДНК была предложена Дж. Уотсоном и Ф. Криком в 1953 году. Основой для создания модели двойной спирали послужили результаты рентгеноструктурного и химического анализа молекул ДНК. А-форма ДНК образуется при дегидратации. Характеризуется более широкой и короткой спиралью, основания имеют более сильный наклон к оси спирали (+19). На один виток спирали приходится 11 пар оснований. Расстояние между соседними нуклеотидами составляет 0,23 нм, длина витка – 2,5 нм, диаметр спирали – 2,3 нм. А-форму имеет спираль РНК-ДНК в комплексе матрица-затравка, а также спираль РНК-РНК и шпилечные структуры РНК (2’-гидроксильная группа рибозы не позволяет молекулам РНК образовывать В-форму). А-форма ДНК обнаружена в спорах. Установлено, что А-форма ДНК в 10 раз устойчивее к действию УФ-лучей, чем В-форма. В-форма ДНК – основной тип двойной спирали. В двойной спирали на один виток приходится 10 пар нуклеотидов (п.н.), длина витка – 3,4 нм. Расстояние между соседними нуклеотидами составляет 0,34 нм, диаметр спирали – 2,0 нм.
С-форма ДНК имеет структуру, сходную с В-ДНК. Число пар оснований на виток составляет 9,33, длина витка спирали равна 3,1 нм. Пары оснований наклонены на угол 8 градусов относительно перпендикулярного положения к оси. Желобки по размерам близки к желобкам В-ДНК. При этом главный желобок несколько мельче, а минорный желобок – глубже. В С-форму могут переходить природные и синтетические полинуклеотиды ДНК. Z-форма ДНК – это двойная спираль, закрученная влево. На один виток этой формы приходится 12 пар оснований. Расстояние между соседними нуклеотидами составляет 0,38 нм, длина витка – 4,56 нм, диаметр Z-ДНК – 1,8 нм. Z- форма ДНК обнаружена в клетках прокариот и эукариот. Обычно Z-форма образуется в участках ДНК, где пурины чередуются с пиримидинами (например, 5’-ГЦГЦГЦ-3’), или в повторах 5’-ЦГЦГЦГ-3’, содержащих метилированный цитозин. Правила Чаргаффа. В 1953 году с помощью кислотного гидролиза ДНК с последующей хроматографией и количественным анализом Эрвин Чаргафф установил следующие закономерности: количество пуриновых оснований (A+Г) в молекуле ДНК всегда равно количеству пиримидиновых оснований (Т+Ц).
количество аденина равно количеству тимина [А=Т, А/Т= 1]; количество гуанина равно количеству цитозина [Г=Ц, Г/Ц=1];
соотношение количества гуанина и цитозина в ДНК к количеству аденина и тимина является постоянным для каждого вида живых организмов: [(Г+Ц)/(А+Т)=К, где К - коэффициент специфичности].
Правила Чаргаффа, как правило, выполняются на двойной спирали ДНК за счет комплементарности аденина тимину, а гуанина - цитозину. В некоторых случаях содержание гуанина выше, чем цитозина, за счет метилирования некоторых цитозиновых остатков в ДНК. Принцип комплементарности: Азотистые основания в молекуле ДНК могут образовывать канонические пары: А – Т, Г – Ц. это значит, что водородные связи и молекуле ДНК образуются только между комплеменатрными основаниями: между аденином и тимином образуется две, между гуанином и цитозином – три водородные связи. Эти пары называют уотсон-криковскими парами по имени ученых, открывших модель структуры ДНК.
14. патологии обмена пуриновых оснований.Ураты значительно более растворимы, чем мочевая кислота: так, в моче с рН 5,0, когда мочевая кислота не диссоциирована, ее растворимость в 10 раз меньше, чем в моче с рН 7,0, при котором основная часть мочевой кислоты представлена солями. Реакция мочи зависит от состава пищи, но, как правило, она слабокислая, поэтому большинство камней в мочевыводящей системе - кристаллы мочевой кислоты.
Аллантоин . Превращение мочевой кислоты в аллантоин.
Когда в плазме крови концентрация мочевой кислоты превышает норму, то возникает гиперурикемия. Вследствие гиперурикемии может развиться подагра - заболевание, при котором кристаллы мочевой кислоты и уратов откладываются в суставных хрящах, синовиальной оболочке, подкожной клетчатке с образованием подагрических узлов, или тофусов. К характерным признакам подагры относят повторяющиеся приступы острого воспаления суставов (чаще всего мелких) - так называемого острого подагрического артрита. Заболевание может прогрессировать в хронический подагрический артрит.
15.Витамины, классификация, биологическая роль. Гипо-, гипер-, авитаминозы. Витамины – это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Они могут быть отнесены к группе биологически активных соединений, оказывающих свое действие на обмен веществ в ничтожных концентрациях.
Витамины делят на две большие группы:– витамины, растворимые в жирах;– витамины, растворимые в воде.
1. Витамины, растворимые в жирах:1) витамин A (антиксерофталический);2) витамин D (антирахитический);3) витамин E (витамин размножения);4) витамин K (антигеморрагический).
2. Витамины, растворимые в воде:1) витамин В1 (антиневритный);2) витамин В2 (рибофлавин);3) витамин PP (антипеллагрический);4) витамин В6 (антидермитный);5) пантотен (антидерматитный фактор);
6) биотин витамин Н, (фактор роста для грибков, дрожжей и бактерий, антисеборейный);7) инозит, пара-аминобензойная кислота (фактор роста бактерий и фактор пигментации);
8) фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий);9) витамин В12 (антианемический витамин);10) витамин В15 (пангамовая кислота);11) витамин С (антискорбутный);
12) витамин Р (витамин проницаемости). Витамин B1 (тиамин). Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метановым мостиком.
Витамин В2 (рибофлавин). В основе структуры витамина В2 лежит структура изоаллоксазина, соединённого со спиртом рибитолом.
Витамин РР (никотиновая кислота, никотинамид, витамин B3)
Пантотеновая кислота (витамин B5) Пантотеновая кислота состоит из остатков D-2,4-дигидрокси-3,3-диметилмасляной кислоты и β-аланина, соединённых между собой амидной связью:
Биотип (витамин Н)В основе строения биотина лежит тиофено-вое кольцо, к которому присоединена молекула мочевины, а боковая цепь представлена валерьяновой кислотой.
Все вышеперечисленные растворимые в воде витамины, за исключением инозита и витаминов С и Р, содержат азот в своей молекуле, и их часто объединяют в один комплекс витаминов группы В.
Болезни,которые возникают вследствии отсутствия в пище тех или иных витаминов,стали называть авитаминозами. Относительный недостаток какого-либо витамина называется гиповитаминозом. Если правильно и своевременно поставлен диагноз,то
авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствущих витаминов.
Черезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.
