- •1.Белки,строение,биологическая роль
- •2.Аминокислоты,строение,классификация.Биологическая роль.
- •3.Белки,свойства белков(денатурация,нативность,эзоэлектрическая точка,белки-коллоиды).Доменная структура белков.Белки-шапероны.
- •4.Первичная,вторичная структура белков.Связи,участвующие в их образовании.Серповидно-клеточная анемия.
- •5.Третичная , четвертичная структура. Связи,участвующие в их образовании
- •6.Азотистый баланс.Полноценные и неполноценные белки.Биологическая ценность белка.
- •7.Матричный биосинтез белков.Репликация.
- •8.Матричный биосинтез белков.Трансляция.
- •9.Матричный биосинтез белков.Транскрипция.
- •10.Сложные белки.Классификация.Гемопротеины.Строение гемма
- •11. Нуклеиновые кислоты. Строение и биологическая роль
- •18. Гликоген. Синтез гликогена
- •19. Гликолиз,значение процесса для организма,1 этап
- •20 Гликолиз,значение процесса для организма,2этап
- •21. Цикл Кребса. Биологическое значение
- •22 Тканевое дыхание
- •23 Липиды и липоиды.Биологическая роль в организме.Классификация
- •26 Обмен липидов в жкт
- •28. Патологии липидного обмена
- •30.Липопротеины. Строение, классификация. Биологическая роль.
- •31.Биосинтез триглицеридов и фосфолипидов.
- •32. Ферменты. Химическая природа и биологическое значение. Классификация и номенклатура.
- •33.Применение ферментов в медицинской практике.
- •34. Механизм действия ферментов. Изоферменты, мультиферментные системы.
- •35. Переваривание белков в желудочно-кишечном тракте.
- •36. Превращение аминокислот в толстом кишечнике.
- •37. Всасывание продуктов распада белков. Судьба всосавшихся аминокислот.
- •38.Дезаминирование. Биологическое значение. Примеры.
- •39.Обезвреживание аммиака в организме. Орнитиновый цикл образования мочевины.
- •40.Декарбоксилирование. Биогенные амины. Биологическое значение. Примеры.
- •41. Трансаминирование.Биологическое значение.Примеры
- •42. Патологии азотистого обмена(триптофана)
- •44. Патологии азотистого обмена аминокислот с разветвлённой углеродной цепью
- •45. Клеточные мембраны, строение, биологическое значение
- •46.Химический состав клеточных мембран.
- •48. Гормоны,биологическая роль,классификация
- •49. Механизмы действия гормонов
- •50.Гормоны мозгового слоя надпочечников
- •51 Гормоны коркового слоя надпочечников
- •52. Инсулин,глюкагон,строение биологическое действие
- •53. Сахарный диабет.
- •54. Гормоны щитовидной железы
- •55. Гормоны паращитовидной железы
- •56. Гонадотропные гормоны
- •57. Гормоны гипофиза. Актг,ттг
- •58.Гормоны гипофиза. Пролактин,вазопрессин,окситоцин
- •59. Эйкозаноиды: простогландины,тромбоксаны.
- •60. Эйкозаноиды.Лейкотриены.Синтез.Биологическая роль
- •16. Витамины-коферменты.
58.Гормоны гипофиза. Пролактин,вазопрессин,окситоцин
В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях. В зависимости от места синтеза различают гормоны передней, задней и промежуточной долей гипофиза.
Пролактин - это крупный белок, представленный одной полипептидной цепью с тремя дисульфидными связями, состоящий из 199 аминокислотных остатков. Видовые отличия в последовательности аминокислот касаются по существу 2–3 аминокислотных остатков. Помимо основного действия (стимуляция развития молочных желез и лактации), пролактин имеет важное биологическое значение – стимулирует рост внутренних органов, секрецию желтого тела (отсюда его второе название «лютеотропный гормон»), оказывает рено-тропное, эритропоэтическое и гипергликемическое действие и др. Избыток пролактина, образующийся обычно при наличии опухолей из секретирую-щих пролактин клеток, приводит к прекращению менструаций (аменорея) и увеличению молочных желез у женщин и к импотенции – у мужчин. В крови женщин уровень пролактина резко повышается перед родами: до 0,2 нг/л против 0,01 нг/л в норме.
В задней доле гипофиза вырабатываются вазопрессин (или АДГ) и окситоцин. Вазопрессин отличается от окситоцина двумя аминокислотами: он содержит в положении 3 от N-конца фенилаланин вместо изолейцина и в положении 8 – аргинин вместо лейцина. Основной биологический эффект окситоцина у млекопитающих связан со стимуляцией сокращения гладких мышц матки при родах и мышечных волокон вокруг альвеол молочных желез, что вызывает секрецию молока. Вазопрессин стимулирует сокращение гладких мышечных волокон сосудов, оказывая сильное вазопрессорное действие, однако основная роль его в организме сводится к регуляции водного обмена, откуда его второе название антидиуретического гормона. В небольших концентрациях (0,2 нг на 1 кг массы тела) вазопрессин оказывает мощное антидиуретическое действие – стимулирует обратный ток воды через мембраны почечных канальцев. В норме он контролирует осмотическое давление плазмы крови и водный баланс организма человека. При патологии, в частности атрофии задней доли гипофиза, развивается несахарный диабет – заболевание, характеризующееся выделением чрезвычайно больших количеств жидкости с мочой. При этом нарушен обратный процесс всасывания воды в канальцах почек.
Относительно механизма действия нейрогипофизарных гормонов известно, что гормональные эффекты, в частности вазопрессина, реализуются через аденилатциклазную систему (см. далее). Однако конкретный механизм действия вазопрессина на транспорт воды в почках пока остается неясным.
59. Эйкозаноиды: простогландины,тромбоксаны.
Эйкозаноиды — окисленные производные полиненасыщенных жирных кислот — эйкозотриеновой (С20:3), арахидоновой (эйкозотетраеновая, С20:4), тимнодоновой (эйкозопентаеновая, С20:5). Пищевыми источниками полиненасыщенных жирных кислот являются растительные масла, рыбий жир и препараты омега-3-жирных кислот.
Депонироваться эйкозаноиды не могут, разрушаются в течение нескольких секунд, поэтому клетка должна синтезировать их постоянно из поступающих в неё соответствующих жирных кислот.
Выделяют три основные группы эйкозаноидов:
- простагландины (Различают 2 класса первичных простагландинов: растворимые в эфире простагланди-ны PGE и растворимые в фосфатном буфере простагландины PGF)
- лейкотриены
- тромбоксаны
Предшественником всех простагландинов являются полиненасыщенные жирные кислоты, в частности арахидоновая кислота. Арахидоновая кислота после освобождения из фосфоглице-ринов (фосфолипидов) биомембран под действием специфических фосфоли-паз А (или С) в зависимости от ферментативного пути превращения дает начало простагландинам и лейкотриенам по схеме:
Первый путь получил наименование циклооксигеназного пути превращения арахидоновой кислоты, поскольку первые стадии синтеза простагландинов катализируются циклооксигеназой, точнее простаглан-дин-синтазой. Центральным химическим процессом биосинтеза основных простаноидов является включение молекулярного кислорода (двух молекул) в структуру арахидоновой кислоты, осуществляемое специфическими оксигеназами, которые, помимо окисления, катализируют циклизацию с образованием промежуточных продуктов – простагландинэндоперекисей PG2[H2], обозначаемых PGG2и PGH2; последние под действием проста-гландин-изомераз превращаются в первичные простагландины. Первичные простагландины синтезируются во всех клетках (за исключением эритроцитов), действуют на гладкие мышцы пищеварительного тракта, репродуктивные и респираторные ткани, на тонус сосудов, модулируют активность других гормонов, автономно регулируют нервное возбуждение, процессы воспаления (медиаторы), скорость почечного кровотока; биологическое действие их опосредовано путем регуляции синтеза цАМФ (см. далее).
Тромбоксан А, в частности тромбоксан А2 (ТхА2), синтезируется преимущественно в ткани мозга, селезенки, легких, почек, а также в тромбоцитах и воспалительной гранулеме из PGH2под действием тромбоксансинта-зы (см. рис. 8.3); из ТхА2 образуются остальные тромбоксаны. Они вызывают агрегацию тромбоцитов, способствуя тем самым тромбообразова-нию, и, кроме того, оказывают самое мощное сосудосуживающее действие из всех простагландинов.
