
- •1.Белки,строение,биологическая роль
- •2.Аминокислоты,строение,классификация.Биологическая роль.
- •3.Белки,свойства белков(денатурация,нативность,эзоэлектрическая точка,белки-коллоиды).Доменная структура белков.Белки-шапероны.
- •4.Первичная,вторичная структура белков.Связи,участвующие в их образовании.Серповидно-клеточная анемия.
- •5.Третичная , четвертичная структура. Связи,участвующие в их образовании
- •6.Азотистый баланс.Полноценные и неполноценные белки.Биологическая ценность белка.
- •7.Матричный биосинтез белков.Репликация.
- •8.Матричный биосинтез белков.Трансляция.
- •9.Матричный биосинтез белков.Транскрипция.
- •10.Сложные белки.Классификация.Гемопротеины.Строение гемма
- •11. Нуклеиновые кислоты. Строение и биологическая роль
- •18. Гликоген. Синтез гликогена
- •19. Гликолиз,значение процесса для организма,1 этап
- •20 Гликолиз,значение процесса для организма,2этап
- •21. Цикл Кребса. Биологическое значение
- •22 Тканевое дыхание
- •23 Липиды и липоиды.Биологическая роль в организме.Классификация
- •26 Обмен липидов в жкт
- •28. Патологии липидного обмена
- •30.Липопротеины. Строение, классификация. Биологическая роль.
- •31.Биосинтез триглицеридов и фосфолипидов.
- •32. Ферменты. Химическая природа и биологическое значение. Классификация и номенклатура.
- •33.Применение ферментов в медицинской практике.
- •34. Механизм действия ферментов. Изоферменты, мультиферментные системы.
- •35. Переваривание белков в желудочно-кишечном тракте.
- •36. Превращение аминокислот в толстом кишечнике.
- •37. Всасывание продуктов распада белков. Судьба всосавшихся аминокислот.
- •38.Дезаминирование. Биологическое значение. Примеры.
- •39.Обезвреживание аммиака в организме. Орнитиновый цикл образования мочевины.
- •40.Декарбоксилирование. Биогенные амины. Биологическое значение. Примеры.
- •41. Трансаминирование.Биологическое значение.Примеры
- •42. Патологии азотистого обмена(триптофана)
- •44. Патологии азотистого обмена аминокислот с разветвлённой углеродной цепью
- •45. Клеточные мембраны, строение, биологическое значение
- •46.Химический состав клеточных мембран.
- •48. Гормоны,биологическая роль,классификация
- •49. Механизмы действия гормонов
- •50.Гормоны мозгового слоя надпочечников
- •51 Гормоны коркового слоя надпочечников
- •52. Инсулин,глюкагон,строение биологическое действие
- •53. Сахарный диабет.
- •54. Гормоны щитовидной железы
- •55. Гормоны паращитовидной железы
- •56. Гонадотропные гормоны
- •57. Гормоны гипофиза. Актг,ттг
- •58.Гормоны гипофиза. Пролактин,вазопрессин,окситоцин
- •59. Эйкозаноиды: простогландины,тромбоксаны.
- •60. Эйкозаноиды.Лейкотриены.Синтез.Биологическая роль
- •16. Витамины-коферменты.
28. Патологии липидного обмена
Нарушение процессов всасывания жиров. Нарушения липидного обмена возможны уже в процессе переваривания и всасывания жиров. Одна группа расстройств связана с недостаточным поступлением панкреатической липазы в кишечник, вторая обусловлена нарушением поступления в кишечник желчи. Кроме того, нарушения процессов переваривания и всасывания липидовмогут быть связаны с заболеваниями пищеварительного тракта (при энтеритах, гиповитаминозах и некоторых других патологических состояниях). Образовавшиеся в полости кишечника моноглицериды и жирные кислоты не могут нормально всасываться вследствие повреждения эпителиального покрова кишечника. Во всех этих случаях кал содержит много нерасщепленного жира или невсосавшихся высших жирных кислот и имеет характерный серовато-белый цвет.
Нарушение процессов перехода жира из крови в ткань. При недостаточной активности липопротеинлипазы крови нарушается переход жирных кислот из хиломикронов (ХМ) плазмы крови в жировые депо (не расщепляются триглицериды). Чаще это наследственное заболевание, обусловленное полным отсутствием активности липопротеинлипазы. Плазма крови при этом
имеет молочный цвет в результате чрезвычайно высокого содержания ХМ. Наиболее эффективным лечением этого заболевания является замена природных жиров, содержащих жирные кислоты с 16–18 углеродными атомами, синтетическими, в состав которых входят короткоцепочечные жирные кислоты с 8–10 углеродными атомами. Эти жирные кислоты способны всасываться из кишечника непосредственно в кровь без предварительного образования ХМ.
Кетонемия и кетонурия. В крови здорового человека кетоновые (ацетоновые) тела содержатся в очень небольших концентрациях. Однако при голодании, а также у лиц с тяжелой формой сахарного диабета содержание кетоновых тел в крови может повышаться до 20 ммоль/л. Это состояние носит название кетонемии; оно обычно сопровождается резким увеличением содержания кетоновых тел в моче (кетонурия). Например, если в норме за сутки с мочой выводится около 40 мг кетоновых тел, то при сахарном диабете содержание их в суточной порции мочи может доходить до 50 г и более. В настоящее время явления кетонемии и кетонурии при сахарном диабете или голодании можно объяснить следующим образом. И диабет, и голодание сопровождаются резким сокращением запасов гликогена в печени. Многие ткани и органы, в частности мышечная ткань, находятся в состоянии энергетического голода (при недостатке инсулина глюкоза не может с достаточной скоростью поступать в клетку). В этой ситуации благодаря возбуждению метаболических центров в ЦНС импульсами с хе-морецепторов клеток, испытывающих энергетический голод, резко усиливаются липолиз и мобилизация большого количества жирных кислот из жировых депо в печень. В печени происходит интенсивное образование кетоновых тел. Образующиеся в необычно большом количестве кетоновые тела (ацетоуксусная и β-гидроксимасляная кислоты) с током крови транспортируются из печени к периферическим тканям. Периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением и как следствие возникает кетонемия. Атеросклероз и липопротеины. В настоящее время доказана ведущая роль определенных классов липопротеинов в патогенезе атеросклероза. Известное положение акад. Н.Н. Аничкова «без холестерина нет атеросклероза» с учетом современных знаний можно выразить иначе: «без атерогенных липопротеинов не может быть атеросклероза».
27. Жирные кислоты.Бета-окисление жирных кислот
Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвленную цепь из четного числа атомов углерода (С4-24, включая карбоксильный углерод) и могут быть как насыщенными, так и ненасыщенными. Ненасыщенные жирные кислоты в свою очередь делятся на
а) моноеновые те содержащие одну двойную связь
б) полиеновые, содержащие много двойных связей (диеновые, триеновые и др)
Природные ненасыщенные жирные кислоты (незаменимые) обычно имеют тривиальное название, например алеиновая, линоливая, линоленовая арахндоновая Жирные кислоты в организме выполняют несколько функций. Прежде всею несомненно это энергетическая функция. Так же выполняют структурную функцию. Выполняют пластическую функцию. Процесс β-окисления протекает поэтапно. На каждом этапе от жирной кислоты отщепляется двухуглеродный фрагмент в виде ацетил-коэнзима А, а также происходит восстановление НАД+ до НАД∙Н и ФАД до ФАД∙Н2.
В ходе первой реакции происходит окисление группы –СН2-СН2–, расположенной около карбонильного атома углерода. Как и при окислении сукцината в цикле Кребса, окислителем служит ФАД. Затем (вторая реакция) происходит гидратация двойной связи образовавшегося непредельного соединения, при этом третий атом углерода становится гидроксилированным – образуется β-оксикислота, присоединенная к коэнзиму А. В ходе третьей реакции происходит окисление этой спиртовой группы до кетогруппы, в качестве окислителя используется НАД+. Наконец, с образовавшимся β-кетоацил-коэнзимом А реагирует другая молекула коэнзима А. В результате отщепляется ацетил-коэнзим А, и ацил-КоА укорачивается на два углеродных атома. Теперь циклический процесс будет протекать по второму заходу, остаток жирной кислоты укоротится еще на один ацетил-КоА, и так до полного расщепления жирной кислоты. Из четырех реакций β-окисления только первая является необратимой, остальные – обратимы, их прохождение слева направо обеспечивается постоянным выводом конечных продуктов.
Суммарно β-окисление пальмитоил-коэнзима А протекает согласно уравнению:
C15H31CO-КоА + 7НАД+ + 7ФАД + 7КоА + 7Н2О = 8ацетил-КоА + 7НАД∙Н + 7ФАД∙Н2 + 7Н+
Ацетил-КоА затем поступает в цикл Кребса. НАД∙Н и ФАД∙Н2 окисляются в митохондриях, обеспечивая энергией синтез АТФ.
29. Желчные кислоты, строение, биологическая роль.
Желчные кислоты - тетрациклические монокарбоновые оксикислоты из класса стероидов. По химической природе являются производными холановой кислоты С23Н39СООН. Они -конечный продукт метаболизма холестерина. Желчные кислоты образуются в печени и выделяются с желчью, как в свободном виде, так и как парные соединения с глицином и таурином. Глицин и таурин связаны с желчными кислотами пептидными связями. В желчи человека в основном содержатся холевая, дезоксихолевая и хенодезоксихолевая. Кроме того, в малых количествах присутствуют литохолевая, аллохолевая и уреодезоксихолевые кислоты. После выделения желчи в кишечник при действии ферментов кишечной микрофлоры из первичных желчных кислот образуются литохолевая и дезоксихолевая кислоты - вторичные желчные кислоты. Они всасываются из кишечника, с кровью воротной вены попадают в печень, а затем в желчь.
Желчные кислоты обладают амфифильными свойствами. Боковая цепь с остатком глицина или таурина гидрофильна, а циклическая часть является гидрофобной. Амфифильная природа желчных кислот обусловливает их участие в переваривании и всасывании жиров.
Желчные кислоты являются поверхностно-активными веществами, принимают участие в эмульгировании жиров. Желчные кислоты резко уменьшают поверхностное натяжение на границе жир/вода. Эмульгирование жиров ускоряет процессы переваривания липидов, т.к. увеличивается поверхность соприкосновения жира с липазой поджелудочной железы. Наиболее мощное эмульгирующее действие на жиры оказывают щелочные (натриевые или калиевые) соли парных желчных кислот.
Желчные кислоты являются активаторами липолитических ферментов (превращение пролипазы в липазу), повышают активность панкреатической липазы в 10-15 раз; а также регулируют перистальтику (моторику) кишечника, обладают бактерицидным действием, подавляя гнилостные процессы.
Желчные кислоты принимают участие во всасывании жиров. Они образуют с жирными кислотами и холеиновые комплексы, которые проникают в клетки слизистой кишечника. Отсюда желчные кислоты поступают в кровь, а с ней - в печень, повторно участвуя в образовании желчи (90-95 % проходят энтерогепатический цикл 5-10 раз за сутки). Небольшая часть желчных кислот - около 0,5 г за сутки - выводится из организма. Фонд желчных кислот обновляется полностью примерно за 10 дней.