
- •1. Роль материалов в современной технике. Об истории развития материаловедения как науки
- •2. Материаловедение. Классификация металлов. Атомно-кристаллическое строение металлов. Типы решеток и их характеристики.
- •2.3. Атомно-кристаллическое строение металлов. Типы решеток и их характеристики.
- •3. Реальное строение металла. Анизотропия. Полиморфизм
- •4. Виды дефектов кристаллической решетки. Диаграмма прочность-плотность дефектов.
- •5. Строение металлических сплавов (химические соединения, твердые растворы, механические смеси).
- •6. Диаграмма состояния и ее построение (метод термического анализа). Правило фаз.
- •7. Диаграмма состояния системы с полной нерастворимостью компонентов в твердом состоянии (с эвтектикой).
- •8. Диаграмма состояния системы с полной (неограниченной) растворимостью компонентов в твердом состоянии.
- •9. Диаграмма состояния системы с неполной (ограниченной) растворимостью компонентов в твердом состоянии (с эвтектикой).
- •10. Диаграмма состояния системы с образованием химического соединения. Диаграмма состав-свойства двойных сплавов (по н.С.Курнакову).
- •11. Примеси, фазы и структуры в железоуглеродистых сталях. Качество стали.
- •12. Диаграмма состояния Fe-Fe3c, значение ее линий, классификация сплавов.
- •13. Углеродистые стали, их маркировка, классификация по равновесной структуре, качеству, назначению.
- •14. Автоматные стали (состав, структура, маркировка, применение).
- •15. Чугуны белые и серые. Процесс графитизации. Диаграмма железо-графит.
- •16. Процесс графитизации при отжиге белого чугуна.
- •17. Серые, ковкие, высокопрочные чугуны (получение, маркировка, структура, применение).
- •18. Упругая и пластическая деформация. Влияние пластической деформации на структуры и свойства металлов. Текстура. Наклеп.
- •19. Влияние нагрева на структуру и свойства деформированного металла. Рекристаллизация. Холодная и горячая пластическая деформация.
- •20. Стандартные механические свойства и методы их определения.
- •Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.
- •Технологические свойства
- •21. Основные виды термической обработки и их классификация. Критические точки для сталей.
- •22. Образование аустенита и рост его зерна при нагреве. Перегрев и пережог.
- •22.1. Образование аустенита при нагревании Механизм и кинетика аустенитизации
- •23. Перлитное превращение переохлажденного аустенита. Диаграмма изотермического распада переохлажденного аустенита.
- •24. Мартенситное превращение. Мартенсит, его строение и свойства.
- •25. Превращение при нагреве закаленной стали. Виды отпуска, строение и свойства стали после закалки и различных видов отпуска. Применение.
- •26. Отжиг, его виды (технология, применение).
- •Полный и неполный отжиг[править | править исходный текст]
- •Изотермический отжиг[править | править исходный текст]
- •Диффузионный (гомогенизирующий) отжиг[править | править исходный текст]
- •Методы выполнения диффузионного отжига[править | править исходный текст]
- •Высокотемпературный диффузионный отжиг[править | править исходный текст]
- •Рекристаллизационный отжиг[править | править исходный текст]
- •27. Закалка, ее виды (технология, применение).
- •28. Закаливаемость и прокаливаемость стали. Дефекты закалки.
- •29. Поверхностное упрочнение стали (закалка, наклеп).
- •30. Химико-термическая обработка. Твердая и газовая цементация (науглероживание).
- •31. Процесс формирования цементованного слоя и его строение.
- •32. Стали для цементации. Термическая обработка после цементации.
- •33. Азотирование стали. Стали для азотирования.
- •34. Нитроцементация стали. Азотонауглероживание.
- •Применение[править | править исходный текст]
- •Оборудование[править | править исходный текст]
- •Структура и свойства нитроцементированного слоя[править | править исходный текст]
- •35. Легирующие элементы в стали. Их влияние на основные превращения и свойства.
- •36. Классификация и маркировка легированных сталей.
- •37. Конструкционные цементуемые легированные стали.
- •38. Конструкционные улучшаемые легированные стали.
- •39. Рессорно-пружинные, шарикоподшипниковые стали.
- •40. Материалы для режущего инструмента, быстрорежущие стали (маркировка, состав, структура, термическая обработка, применение).
- •41. Стали для измерительного инструмента, штамповые стали для деформирования металлов в холодном и горячем состоянии.
- •43. Виды коррозия. Хромистые и хромоникелевые нержавеющие стали.
- •43.1.Виды коррозии по механизму протекания процесса:
- •Виды коррозии по условиям протекания:
- •Виды коррозии по характеру разрушения:
- •44. Жаростойкость и жаропрочность. Жаростойкие и жаропрочные стали.
- •45. Алюминий и его сплавы (деформируемые и литейные).
- •46. Медь и ее сплавы. Латунь, бронза.
- •47. Классификация полимеров по методам получения и поведению при нагревании.
- •48. Неорганические неметаллические материалы, применяемые в технике. Стекло, ситаллы, техническая керамика.
4. Виды дефектов кристаллической решетки. Диаграмма прочность-плотность дефектов.
4.1.Реальные кристаллы всегда содержат некоторое число дефектов кристаллической структуры. Появление дефектов в кристаллах неизбежно, поскольку они образуются уже в процессе выращивания монокристалла вещества. Их концентрация быстро возрастает с температурой, а также при деформировании кристалла. Различают два основных вида дефектов кристаллической решетки (рис. 1.10).
Точечные дефекты создаются при внедрении в узлы и междоузлия идеальной кристаллической структуры "чужеродных" атомов, например, при приготовлении сплава (рис. 1.10, а и б). Кроме того, к точечным дефектам относятся вакансии, то есть, не заполненные атомами основного материала узлы кристаллической решетки. При этом атом основного материала может находиться рядом, в междоузлии кристаллической решетки (дефекты по Френкелю, рис. 1.10, в). Возможен случай, когда атом вообще может испариться из объема материала и вакансия является одиночной (дефекты по Шоттки, рис. 1.10, г).
Точечные дефекты кристаллической решетки могут образовываться при бомбардировке поверхности кристалла ускоренными заряженными ионами различных веществ. Дефекты такого происхождения называютрадиационными дефектами.
Другим видом дефектов кристаллической структуры являются дислокации. Дислокация - это линейный дефект, заключающийся в смещении плоскостей кристаллической решетки относительно друг друга. Различают два основных типа дислокаций:
линейная (краевая) дислокация представляет результат неполного сдвига кристаллической решетки. В итоге появляется незаконченная полуплоскость атомов (рис. 1.11, а);
винтовая дислокация возникает вследствие полного сдвига некоторого участка решетки (рис. 1.11, б).
Дислокации возникают как в процессе выращивания монокристаллов, так и в результате их механической и термической обработки. Границы кристаллитов в поликристаллических телах также имеют дислокационную природу.
Выходы дислокаций на поверхность кристалла можно обнаружить по результатам травления кристалла в специальном травителе. В результате травления на поверхности кристалла появляются ямки травления, хорошо видимые под микроскопом. Плотность дислокаций оценивают визуально, подсчитывая под микроскопом число ямок травления на единице площади поверхности кристалла. Например, кристалл полупроводникового материала пригоден к дальнейшему использованию, если плотность дислокаций в нем не превышает 106107 м-2.
4.2.
5. Строение металлических сплавов (химические соединения, твердые растворы, механические смеси).
Под металлическим сплавом понимают вещество, получаемое сплавлением двух или более элементов с характерными металлическими свойствами. Металлические сплавы получают сплавлением элементов-металлов или металлов с неметаллами при преимущественном содержании металлов. Строение сплавов сложнее, чем чистых металлов.
Твердый раствор — сплав, у которого атомы растворимого элемента размещены в кристаллической решетке растворителя. На микрошлифе твердого раствора кристаллы после травления выглядят совершенно одинаково. На рис. 21 представлена микроструктура твердого раствора цинка в меди.
В кристаллах твердого раствора существует только один тип кристаллической решетки. Растворителем является тот элемент,кристаллическую решетку которого имеет твердый раствор. Растворимый элемент может либо замещать элемент-растворитель в узлах кристаллической решетки, либо располагаться в междоузлиях. По типу расположения атомов растворимого элемента в кристаллической решетке твердые растворы делят на две группы: замещения и внедрения.
Металлы образуют химические соединения как с металлами, так и с неметаллами. Химическое соединение характеризуется определенной температурой плавления (диссоциации), скачкообразным изменением свойств при изменении состава.
Химические соединения металлов с неметаллами образуются при строго определенных соотношениях входящих в них элементов, соответствующих нормальным валентностям. Атомы металлов в таких соединениях отдают свои валентные электроны неметаллам. Химические соединения металлов с неметаллами не обладают металлическими свойствами (например, А]203, FeO, NaCl и др.).
Химические соединения между двумя металлами или металлом и элементом со свойствами, переходными между металлом и неметаллом, обладают металлическими свойствами. Химические соединения дают металлы, далеко стоящие друг от друга в периодической таблице элементов Д. И. Менделеева и сильно отличающиеся по свойствам. Металлические свойства у химических соединений выражены слабее, чем у чистых металлов и твердых растворов.
Химические соединения имеют повышенную твердость и пониженную пластичность.