
- •1. Роль материалов в современной технике. Об истории развития материаловедения как науки
- •2. Материаловедение. Классификация металлов. Атомно-кристаллическое строение металлов. Типы решеток и их характеристики.
- •2.3. Атомно-кристаллическое строение металлов. Типы решеток и их характеристики.
- •3. Реальное строение металла. Анизотропия. Полиморфизм
- •4. Виды дефектов кристаллической решетки. Диаграмма прочность-плотность дефектов.
- •5. Строение металлических сплавов (химические соединения, твердые растворы, механические смеси).
- •6. Диаграмма состояния и ее построение (метод термического анализа). Правило фаз.
- •7. Диаграмма состояния системы с полной нерастворимостью компонентов в твердом состоянии (с эвтектикой).
- •8. Диаграмма состояния системы с полной (неограниченной) растворимостью компонентов в твердом состоянии.
- •9. Диаграмма состояния системы с неполной (ограниченной) растворимостью компонентов в твердом состоянии (с эвтектикой).
- •10. Диаграмма состояния системы с образованием химического соединения. Диаграмма состав-свойства двойных сплавов (по н.С.Курнакову).
- •11. Примеси, фазы и структуры в железоуглеродистых сталях. Качество стали.
- •12. Диаграмма состояния Fe-Fe3c, значение ее линий, классификация сплавов.
- •13. Углеродистые стали, их маркировка, классификация по равновесной структуре, качеству, назначению.
- •14. Автоматные стали (состав, структура, маркировка, применение).
- •15. Чугуны белые и серые. Процесс графитизации. Диаграмма железо-графит.
- •16. Процесс графитизации при отжиге белого чугуна.
- •17. Серые, ковкие, высокопрочные чугуны (получение, маркировка, структура, применение).
- •18. Упругая и пластическая деформация. Влияние пластической деформации на структуры и свойства металлов. Текстура. Наклеп.
- •19. Влияние нагрева на структуру и свойства деформированного металла. Рекристаллизация. Холодная и горячая пластическая деформация.
- •20. Стандартные механические свойства и методы их определения.
- •Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.
- •Технологические свойства
- •21. Основные виды термической обработки и их классификация. Критические точки для сталей.
- •22. Образование аустенита и рост его зерна при нагреве. Перегрев и пережог.
- •22.1. Образование аустенита при нагревании Механизм и кинетика аустенитизации
- •23. Перлитное превращение переохлажденного аустенита. Диаграмма изотермического распада переохлажденного аустенита.
- •24. Мартенситное превращение. Мартенсит, его строение и свойства.
- •25. Превращение при нагреве закаленной стали. Виды отпуска, строение и свойства стали после закалки и различных видов отпуска. Применение.
- •26. Отжиг, его виды (технология, применение).
- •Полный и неполный отжиг[править | править исходный текст]
- •Изотермический отжиг[править | править исходный текст]
- •Диффузионный (гомогенизирующий) отжиг[править | править исходный текст]
- •Методы выполнения диффузионного отжига[править | править исходный текст]
- •Высокотемпературный диффузионный отжиг[править | править исходный текст]
- •Рекристаллизационный отжиг[править | править исходный текст]
- •27. Закалка, ее виды (технология, применение).
- •28. Закаливаемость и прокаливаемость стали. Дефекты закалки.
- •29. Поверхностное упрочнение стали (закалка, наклеп).
- •30. Химико-термическая обработка. Твердая и газовая цементация (науглероживание).
- •31. Процесс формирования цементованного слоя и его строение.
- •32. Стали для цементации. Термическая обработка после цементации.
- •33. Азотирование стали. Стали для азотирования.
- •34. Нитроцементация стали. Азотонауглероживание.
- •Применение[править | править исходный текст]
- •Оборудование[править | править исходный текст]
- •Структура и свойства нитроцементированного слоя[править | править исходный текст]
- •35. Легирующие элементы в стали. Их влияние на основные превращения и свойства.
- •36. Классификация и маркировка легированных сталей.
- •37. Конструкционные цементуемые легированные стали.
- •38. Конструкционные улучшаемые легированные стали.
- •39. Рессорно-пружинные, шарикоподшипниковые стали.
- •40. Материалы для режущего инструмента, быстрорежущие стали (маркировка, состав, структура, термическая обработка, применение).
- •41. Стали для измерительного инструмента, штамповые стали для деформирования металлов в холодном и горячем состоянии.
- •43. Виды коррозия. Хромистые и хромоникелевые нержавеющие стали.
- •43.1.Виды коррозии по механизму протекания процесса:
- •Виды коррозии по условиям протекания:
- •Виды коррозии по характеру разрушения:
- •44. Жаростойкость и жаропрочность. Жаростойкие и жаропрочные стали.
- •45. Алюминий и его сплавы (деформируемые и литейные).
- •46. Медь и ее сплавы. Латунь, бронза.
- •47. Классификация полимеров по методам получения и поведению при нагревании.
- •48. Неорганические неметаллические материалы, применяемые в технике. Стекло, ситаллы, техническая керамика.
Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.
Является энергетической характеристикой материала, выражается в единицах работы. Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами. Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).
Влияние температуры.
С повышением температуры вязкость увеличивается (см. рис. 7. 2).
Предел текучести Sт существенно изменяется с изменением температуры, а сопротивление отрыву Sот не зависит от температуры. При температуре выше Тв предел текучести меньще сопротивления отрыву. При нагружении сначала имеет место пластическое деформирование, а потом – разрушение. Металл находится в вязком состоянии.
Прт температуре ниже Тн сопротивление отрыву меньше предела текучести. В этом случае металл разрушается без предварительной деформации, то есть находится в хрупком состоянии. Переход из вязкого состояния в хрупкое осуществляется в интервале температур
Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры.
Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемно-центрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.
Рис. 7.2. Влияние температуры на пластичное и хрупкое состояние
Способы оценки вязкости.
Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению
Испытание проводят на образцах с надрезами определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника,который поднимают на определенную высоту (рис. 7.3)
Рис.7.3. Схема испытания на ударную вязкость:
а – схема маятникового копра; б – стандартный образец с надрезом;
в – виды концентраторов напряжений; г – зависимость вязкости от температуры
На разрушение образца затрачивается работа:
где: Р – вес маятника, Н – высота подъема маятника до удара, h – высота подъема маятника после удара.
Характеристикой вязкости является ударная вязкость (ан), — удельная работа разрушения.
где: F0 — площадь поперечного сечения в месте надреза.
В ГОСТ 9454 ударная вязкость обозначается KCV. KCU. KCT. KC – символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина © (рис. 7.3 в)
Серийные испытания для оценки склонности металла к хладоломкости и определения критических порогов хладоломкости.
Испытывают серию образцов при различных температурах и строят кривые ударная вязкость – температура ( ан – Т) (рис. 7.3 г), определяя пороги хладоломкости.
Порог хладоломкости - температурный интервал изменения характера разрушения, является важным параметром конструкционной прочности. Чем ниже порог хладоломкости, тем менее чувствителен металл к концентраторам напряжений (резкие переходы, отверстия, риски), к скорости деформации.
Оценка вязкости по виду излома.
При вязком состоянии металла в изломе более 90 % волокон, за верхний порог хладоломкости Тв принимается температура, обеспечивающая такое состояние. При хрупком состоянии металла в изломе 10 % волокон, за нижний порог хладоломкости Тнпринимается температура, обеспечивающая такое состояние. В технике за порог хладоломкости принимают температуру, при которой в изломе 50 % вязкой составляющей. Причем эта температура должна быть ниже температуры эксплуатации изделий не менее чем на 40ºС.
Испытания на выностивость (ГОСТ 2860) дают характеристики усталостной прочности.
Усталость - разрушение материала при повторных знакопеременных напряжениях, величина которых не превышает предела текучести.
Усталостная прочность – способность материала сопротивляться усталости.
Процесс усталости состоит из трех этапов, соответствующие этим этапам зоны в изломе показаны на рис.7.4.
Рис 7.4. Схема зарождения и развития трещины при переменном изгибе
круглого образца
1 – образование трещины в наиболее нагруженной части сечения, которая подвергалась микродеформациям и получила максимальное упрочнение
2 – постепенное распространение трещины, гладкая притертая поверхность
3 – окончательное разрушение, зона “долома“, живое сечение уменьшается ,а истинное напряжение увеличивается, пока не происходит разрушение, хрупкое или вязкое
Характеристики усталостной прочности определяются при циклических испытаниях “изгиб при вращении“. Схема представлена на рис. 7.5.
Рис. 7.5. Испытания на усталость (а), кривая усталости (б)
Основные характеристики:
Предел выносливпсти (σ -1 – при симметричном изменении нагрузки, σR – при несимметричном изменении нагрузки) – максимальное напряжение, выдерживаемое материалом за произвольно большое число циклов нагружения N.
Ограниченный предел выносливости – максимальное напряжение, выдерживаемое материалом за определенное число циклов нагружения или время.
Живучесть – разность между числом циклов до полного разрушения и числом циклов до появления усталостной трещиныю.