- •Предмет і завдання методики початкового навчання математики
- •Методика початкового навчання математики та інші науки
- •Зміст початкового курсу математики. Аналіз програми з математики для початкових класів
- •Підручник як основний засіб навчання математики в початкових класах
- •Засоби навчання математики в початкових класах
- •Методи навчання математики в початкових класах
- •Складові частини комплексного уроку з математики
- •Форми організації навчання учнів на уроках математики
- •Організація навчання математики в малокомплектній школі
- •Організація позакласної роботи з математики в початковій школі
- •Особливість уроку математики в першому класі
- •Контроль, корекція і закріплення знань на уроках математики
- •Методика опрацювання нового матеріалу
- •Дочисловий період навчання математики. Методика навчання в дочисловому періоді.
- •Методика вивчення нумерації чисел в межах 10.
- •Методика вивчення додавання та віднімання в межах 10.
- •Методика вивчення нумерації чисел 11-20.
- •Методика роботи з таблицями додавання та віднімання з переходом через десяток
- •Методика вивчення нумерації чисел 21-100
- •Усні випадки додавання і віднімання в межах 100
- •Методика письмового додавання та віднімання в межах 100
- •Методика вивчення таблиці множення
- •Методика вивчення нумерації чисел 101-1000
- •Методика вивчення усних випадків додавання і віднімання в межах 1000
- •Методика вивчення письмового додавання і віднімання в межах 1000
- •Методика вивчення усного множення і ділення в межах 1000
- •Методика вивчення письмового множення в межах 1000
- •Методика вивчення письмового ділення в межах 1000
- •Методика вивчення нумерації багатоцифрових чисел
- •Методика вивчення усних випадків обчислень багатоцифрових чисел
- •Методика вивчення додавання і віднімання багатоцифрових чисел.
- •Методика вивчення множення і ділення багатоцифрових чисел
- •Методика вивчення величин довжини
- •Методика вивчення величин площі
- •Методика вивчення маси тіл
- •Методика формування часових уявлень
- •Методика ознайомлення з поняттям швидкості
- •Роль і місце текстової задачі в початковому курсі математики
- •Складові процесу розв’язування задач
- •Культура запису розв’язування задач
- •Прості задачі. Класифікація простих задач
- •Прості задачі, які ілюструють зміст арифметичних дій (5 видів)
- •Прості задачі, які ілюструють зв'язок між результатами та компонентами
- •Прості задачі на різницеве порівняння величин (6 задач)
- •Прості задачі на кратне порівняння величин (6 задач)
- •Підготовча робота про введення складених задач
- •Розвиток уявлень учнів про структуру задачі
- •Складені задачі на знаходження четвертого пропорційного
- •Задачі на знаходження невідомого за двома різницями
- •Формування початкових уявлень про дроби. Ознайомлення з частинами
- •Формування початкових уявлень про дроби. Ознайомлення з дробами.
- •Задачі на знаходження частини від числа, та числа за його частиною
- •Формування і розвиток уявлень учнів про числовий вираз
- •Перетворення і порівняння числових виразів. Числові рівності та нерівності.
- •Рівняння і нерівності зі змінними
- •Формування уявлень учнів про функціональну залежність
- •Розвиток просторових уявлень молодших школярів
- •Формування уявлень про лінії та відрізки
- •Ознайомлення з кутом. Ознайомлення з геометричними фігурами.
Перетворення і порівняння числових виразів. Числові рівності та нерівності.
Ще в 1 класі учні дістали уявлення про порівняння окремих чисел, числових виразів, застосовуючи у вправах знаки: дорівнює, більше, менше.
Наприклад: 2> 1; 7+8 >10; і т д.2=2
Два рівні числа, або 2 вирази, що мають однакові значення, з’єднані знаком "=" утворюють рівність.
Наприклад: 81 : 9=9;
Якщо ж одне число більше (менше) за друге, або один вираз має більше, або менше значення, ніж другий, то, з'єднані відповідним знаком (більше, менше) вони утворюють нерівність.
Рівняння і нерівності зі змінними
Відповідно до програми в 1 - 4 класах розглядають рівняння 1 ступеня з одним невідомим.
Наприклад: 7 + х = 10; х - 3 = 10 + 5. х • (17 - 10) == 70; і т. д.
Рівняння в початкових класах трактують, як правильні рівності, розв'язування рівнянь зводиться до відшукування того значення букви (невідомого числа), при якому цей вираз має певне значення. Невідоме число в таких рівностях знаходиться спочатку добором, ?+ 3=7 (на основі складу числа 7), а потім на підставі значення зв’язку між результатом і компонентами арифметичних дій. Ці вимоги програми визначають методику роботи над рівняннями.
Найскладнішими є рівняння, в яких один із компонентів – вираз, що має невідоме число.
Наприклад: (х + 8) – 13 = 15
Нерівності зі змінною не є обов’язковим компонентом програми. Вивчення є ознайомлювальним.
Формування уявлень учнів про функціональну залежність
У початкових класах учні ознайомлюються з вимірюванням деяких величин (довжина, площа, маса, час), встановлюють зв'язки між величинами: ціна, кількість і вартість; маса одного предмета, кількість предметів і загальна маса; швидкість, час і відстань при рівномірному русі тіла тощо. Діти спостерігають, як змінюється результат арифметичної дії від зміни компонентів. Названі величини попарно перебувають у різних видах залежностей: прямо пропорційній (ціна і вартість, множник і добуток); обернено пропорційній (ціна і кількість, дільник і частка); лінійній (доданок і сума, зменшуване і різниця). Завдання вчителя полягає в тому, щоб під час виконання відповідних вправ спрямувати увагу учнів на ці зв'язки і залежності. При цьому, звичайно, не використовують відповідні термінологію й символіку. Ознайомлення дітей з функціональною залежністю відбувається в неявному вигляді. Вчитель оперує лише словами "залежність", "змінна величина". У початкових класах функціональну залежність між величинами здебільшого описують словами та показують її за допомогою таблиці.
Розвиток просторових уявлень молодших школярів
Термін “просторова уява” включає, до свого змісту знання про форму, протяжність і напрямок. На основі сформованого відчуття простору зміцнюються просторові уявлення дітей про форми окремих предметів і суто геометричні форми, про їх довжину, ширину, висоту і т.д. Основою формування просторової уяви практичний досвід, що набувається дітьми в процесі спостереження, вимірювання, розв'язування задач, креслення, малювання, конструювання, при виконанні фізичних вправ, трудових процесів і т. д.
Вирізування на уроках ручної праці з паперу різних геометричних фігур і складання з них орнаментів і узорів, ліплення - сприяють розвитку дітей просторової уяви.
При розв'язанні задач геометричного змісту, коли дітям важко за словесними формулюваннями виконати завдання вчитель повинен показати їм, креслячи на дошці відповідну фігуру, тощо. Пізніше просторова уява учнів розвивається під час креслення відрізків, плоских фігур, в процесі виконання вимірювальних робіт на місцевості. зокрема вправ, метою яких є розвиток окоміру.
