
- •Краткая характеристика телекоммуникационных систем
- •1.2. Назначение телекоммуникационных систем
- •1.3. Структура телекоммуникационных систем
- •1.4. Описание технической подсистемы телекоммуникационных систем
- •1.5. Модель телекоммуникационной системы согласно рекомендации мсэ.
- •1.6. Основная характеристика телекоммуникационных систем
- •1.7.Структурно-функциональное построение телекоммуникационных систем
- •1.9. Основные тенденции развития телекоммуникационных систем
- •2.1. Классификация по принадлежности к различным службам радиосвязи
- •2.2. Классификация по применению
- •2.3 Классификация по диапазону используемых радиочастот
- •2.4 Классификация по характеру используемого физического процесса в тракте распространения радиоволн
- •2.5. Классификация по виду передаваемых сигналов
- •2.6. Классификация по способу разделения каналов
- •2.7. Классификация по виду модуляции несущей
- •2.8. Классификация по пропускной способности
- •2.9. Классификация в зависимости от области использования
- •Лекция3. Структура построения и характеристики радиосистем передачи
- •2.10.Структура и функции радиосистем передачи
- •2.11. Общая схема организации радиорелейной связи
- •Самые читаемые
- •2.12. Обобщенная структурная схема многоканальной системы передачи
- •2.13. Назначение и состав радиоствола
- •2.14. Структурная схема ствола дуплексной радиосистемы передачи
- •2.14.1 Принцип многоствольной передачи
- •2.15. План распределения частот в дуплексном стволе радиосистемы передачи
- •2.16.Определение и общая структура радиоканала
- •2.17. Бюджет канала связи
- •2.18 Причины искажений сигналов в радиосистемах передачи.
- •Лекция 3. Структура построения, характеристики радиосистем передачи и критерии качества телекоммуникационных каналов и систем
- •3.1.Структура и функции радиосистем передачи
- •3.2. Общая схема организации радиорелейной связи
- •3.3. Обобщенная структурная схема многоканальной системы передачи
- •3.4. Структурная схема ствола дуплексной радиосистемы передачи
- •3.5. Принцип многоствольной передачи
- •3.6. План распределения частот в дуплексном стволе радиосистемы передачи
- •3.7.Определение и общая структура радиоканала
- •3.8. Бюджет канала связи
- •3.9. Причины искажений сигналов в радиосистемах передачи.
- •3.10. Характеристики и критерии качества телекоммуникационных каналов и систем
- •3.11. Требования к характеристикам телекоммуникационных каналов и систем
- •3.12. Пропускная способность и спектральная эффективность телекоммуникационных систем
- •3.13 Критерии помехоустойчивости телекоммуникационных каналов и систем
- •3.14. Надежность функционирования канала связи
- •3.14.1 Критерии надежности телекоммуникационных каналов и систем
- •Общие положення
- •4.1. Ослабление радиоволн при распространении в свободном пространстве
- •4.2.Множитель ослабления в реальных условиях
- •4.2.1. Учет влияния рефракции при распространении радиоволн
- •4.2.1.1. Эквивалентный радиус Земли
- •4.2.1.2. Виды рефракции радиоволн в тропосфере
- •4.3. Замирания радиосигналов на интервалах ррл
- •4.4. Профиль и классификация трасс радиорелейных линий
- •4.4.1.Последовательность построения профиля интервала.
- •4.4.2. Классификация просветов и интервалов радиорелейных линий
- •4.4.3. Интерференционные формулы для расчета множителя ослабления
- •4.4.4. Коэффициент отражения от земной поверхности
- •4.4.5. Частотная селективность изменения множителя ослабления
- •Лекция 5. Замирания радиосигналов на интервалах радиорелейных линий
- •5.1. Замирания из-за ослабления сигнала гидрометеорами ,из-за поглощения в газах , в песчаных и пыльных бурях.
- •5.2. Ослабление радиосигнала в дожде
- •5.3. Ослабление сигнала в сухом снеге и граде
- •5.4. Ослабление сигнала в мокром снеге
- •5.5. Ослабление сигнала в туманах и облаках
- •5.6. Эффективная длина трассы
- •5.7. Методика расчета ослабления радиосигнала в дожде Методика расчета ослабления радиосигнала в дожде состоит в следующем:
- •2. Определяется ,зная значение интенсивности дождя ід (мм/ч), при котором необходимо обеспечить работу радиолиний, погонное ослабление (коэффициент ослабления) д (дБ/км) в дожде по формуле
- •Коэффициент ослабления д также можно определить из номограммы (рис. 5.1.).
- •5.8. Замирания из-за поглощения в газах
- •5.9. Замирания из-за ослабления сигнала в песчаных и пыльных бурях
- •6.1. Энергетический потенциал радиорелейных линий
- •6.2. Полная мощность шумов, создаваемых на входе приемного устройства телекоммуникационной системы различными источниками
- •6.2.1. Полная эквивалентная шумовая температура приемной системы
- •6.2.2. Эквивалентная шумовая температура антенны
- •6.2.3. Космическое радиоизлучение
- •6.2.4. Радиоизлучение земной атмосферы с учетом гидрометеоров
- •6.2.5. Радиоизлучение земной поверхности и излучение атмосферы, отраженное от Земли
- •6.2.7. Шумовая температура антенны, обусловленная потерями сигнала в радиопрозрачном обтекателе
- •6.2.9. Решения при проектировании радиорелейных линий, вытекающие из особенностей распространения радиоволн.
- •6.2.9. 2 Неготовность из-за влияния субрефракции
- •6.2.9. 3. Неготовность из-за влияния интерференционных замираний
- •6.2.9. 4. Неготовность из-за влияния гидрометеоров
- •Лекция 7. Частотные планы радиорелейных систем передачи
- •7.1. Полосы частот, выделенные для радиорелейной связи
- •7.2. Планы частот радиорелейных станций
- •7.3. Рабочие частоты радиорелейных станций
- •1. Международная таблица распределения частот
- •2. Основные положения Регламента радиосвязи
- •3. Планы использования полос радиочастот
- •4. Международно-правовая защита частотных присвоений
- •5. Распределение полос частот между различными радиослужбами
- •Лекция 8. Радиорелейные системы передачи прямой видимости общие принципы и особенности построения радиорелейных линий
- •8.2. Расчет уровней сигнала на интервале ррл
- •8.3.Пример расчета
- •Аппаратура радиорелейных систем и ее особенности
- •8.5.Пропускная способность
- •8.6.Адаптивная модуляция
- •8.8. Симплексная радиорелейная система
- •8.8.1.Устройство и работа системы в целом.
- •8.9. Внешний вид и конструкция устройства апу
- •8.8.4.Устройство и работа составных частей системы.
- •8.8.5. Активные промежуточные ретрансляционные станции
- •8.8.6. Пассивные ретрансляторы
- •8.8.7.Построение цифровых радиорелейных систем
- •8.8.8. Принципы построения, оборудование и функционирование цифровых
- •Эврика мик рл4…8с
6.2.4. Радиоизлучение земной атмосферы с учетом гидрометеоров
Радиоизлучение земной атмосферы имеет тепловой характер и обусловлено поглощением сигналов в атмосфере. Установлено, что в диапазонах частот выше 500 МГц, основное поглощение определяется тропосферой, точнее газами тропосферы – кислорода и водяными парами, а также дождем и прочими гидрометеорами (ионосфера и остальные газы тропосферы, например, двуокись углерода или азот, играют малую роль). Коэффициенты поглощения для стандартной атмосферы имеют ярко выраженный частотно-зависимый характер (рис.6.4): наблюдаются резонансные пики на частотах 22 и 165 ГГц (для водяных паров), а также 60 и 120 ГГц (для кислорода).
Рис.6.4. Зависимость коэффициента молекулярного поглощения для кислорода и водяных паров от частоты
Эквивалентная длина пути сигнала в стандартной атмосфере, очевидно, зависит не только от эквивалентной толщины атмосферы, но и от угла места земной антенны и высоты земной станции над уровнем моря h3:
;
,
где
=5,3км,
=2,1км
– эквивалентная толщина слоя кислорода
и водяных паров в стандартной атмосфере.
Частотная зависимость поглощения радиоволн в основной (невозмущенной) атмосфере без гидрометеоров, которые представляют собой как бы постоянную составляющую потерь, имеющих место в течение 100% времени, представлена на рис.6.5.
В силу термодинамического равновесия среда (атмосфера) излучает такое же количество энергии на данной частоте, которое поглощает, соответственно шумовая температура Тша, обусловленная излучением атмосферы с учетом гидрометеоров, равна ее яркостной температуре Тяа:
,
где:
- средняя термодинамическая температура
стандартной атмосферы,
- поглощение радиоволн в атмосфере.
Как
показывают расчеты, средняя термодинамическая
температура стандартной атмосферы для
углов места
в рассматриваемых диапазонах частот
равна:
.
Яркостную температуру спокойной атмосферы (без дождя) на разных частотах можно найти, воспользовавшись значениями из рис. 6.5.
Рис.6.5. Частотная зависимость поглощения радиоволн в спокойной атмосфере (без дождя) при различных углах места
Результаты вычислений частотных характеристик яркостной температуры атмосферы с дождем при различных углах места (рис.6.6.) показывают, что максимальная температура шумов неба не превышает 260К и начинает играть существенную роль в диапазонах частот выше 5 ГГц.
Рис.6.6. Частотные зависимости шумовой температуры атмосферы
(с учетом дождя) для разных процентов времени Т дождя в течение часа: а) для процента времени Т =1%; б) для процента времени Т =0,1%.
Например, на частоте 10 ГГц для радиорелейной связи при =0 величина Тша=220К, а для спутниковой связи при =100 величина Тша=90К.
Приведенная оценка температуры атмосферы, по существу, относится к тропосфере. Радиоизлучением ионосферы в диапазоне частот выше 1 ГГц можно пренебречь, так как поглощение в ионосфере обратно пропорционально квадрату частоты Lи2,5 х 1015/f2 и не превышает 2,5 х 10-3 дБ даже при низких углах места антенны.