
- •1 Вопрос
- •Инжекция и экстракция носителей заряда
- •Что следует выделить:
- •Уровень инжекции
- •2 Вопрос Полупроводниковый диод
- •Диод в состоянии покоя
- •Обратное включение диода
- •Прямое включение диода
- •Недостатки реального полупроводникового диода
- •Принцип работы выпрямительного диода
- •3 Вопрос Туннельный диод
- •4 Вопрос
- •Принцип действия
- •Области применения
- •5 Вопрос
- •Устройство и принцип действия
- •6 Вопрос Схемы включения бтп
- •7.Статические характеристики бпт
- •8. Применение бпт в усилительном и ключевом режиме.
- •9. Усилители мощности, особенности построения
- •10 Трансформаторный усилитель мощности Усилитель низкой частоты
- •11 Усилитель-выбор рабочей точки
- •12)Полевые транзисторы с индуцированным каналом
- •13) Мдп транзистор
- •14) Тиристор
- •15)Динистор
- •17)Схема Усилителя с оэ, шумы усилителя, обоснование введения обратных связей
- •18 Вопрос Характеристики многокаскадных усилителей
- •19 Вопрос генератор пилообразного напряжения
- •20 Вопрос Блокинг-генератор
- •21 Вопрос Триггер
- •22 Вопрос Ждущий режим мультивибратора
- •Как работает ждущий мультивибратор?
- •23 Вопрос
- •Исследование мультивибратора, работающего в автоколебательном режиме
- •Цифровые устройства - алгебра логики
- •1. Закон одинарных элементов
- •2. Законы отрицания a. Закон дополнительных элементов
- •B. Двойное отрицание
- •C. Закон отрицательной логики
- •3. Комбинационные законы
- •A. Закон тавтологии (многократное повторение)
- •Кодирование сигналов в цифровых устройствах
- •Классификация цифровых устройств
- •Цап, ацп, Арифметическое устройство
- •Микропроцессор, устройство эвм
- •Импульсные режимы работы диода и транзистора
- •4.7. Работа транзистора в импульсном режиме.
- •4.7.1. Режим переключения.
- •4.7.2. Расчет времени включения.
- •4.7.3. Расчет времени рассасывания заряда.
- •Переходные процессы для высокого уровня инжекции
- •Процесс переключения диода с прямого направления на обратное.
Принцип работы выпрямительного диода
У диода есть два вывода (электрода) анод и катод. Анод присоединён к p слою, катод к n слою. Когда на анод подаётся плюс, а на анод минус (прямое включение диода) диод пропускает ток. Если на анод подать минус, а на катод плюс (обратное включение диода) тока черездиода не будет это видно из вольт амперной характеристики диода. Поэтому когда на вход выпрямительного диода поступает переменное напряжение через него проходит только одна полуволна.
Вольт-амперная характеристика (ВАХ) диода.
Вольт-амперная характеристика диода показана на рис. I. 2. В первом квадранте показана прямая ветвь характеристики, описывающая состояние высокой проводимости диода при приложенном к нему прямом напряжении, которая линеаризуется кусочно-линейной функцией
u = U0+RДi
где: u — напряжение на вентиле при прохождении тока i; U0 - пороговое напряжение; Rд - динамическое сопротивление.
В третьем квадранте находится обратная ветвь вольт-амперной характеристики, описывающая состояние низкой проводимости при проложенном к диоду обратном напряжении. В состоянии низкой проводимости ток через полупроводниковую структуру практически не протекает. Однако это справедливо только до определённого значения обратного напряжения. При обратном напряжении, когда напряженность электрического поля в p-n переходе достигает порядка 10s В/см, это поле может сообщить подвижным носителям заряда — электронам и дыркам, постоянно возникающим во всем объеме полупроводниковой структуры в результате термической генерации,— кинетическую энергию, достаточную для ионизации нейтральных атомов кремния. Образовавшиеся дырки и электроны проводимости, в свою очередь, ускоряются электрическим полем p-n перехода и также ионизируют нейтральные атомы кремния. При этом происходит лавинообразное нарастание обратного тока, .т. е. лавинный пробои.
Напряжение, при котором происходит резкое повышение обратного тока,называется напряжением пробоя U3.
3 Вопрос Туннельный диод
Туннельный диод – это полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперной характеристике при прямом напряжении участка с отрицательной дифференциальной проводимостью.
Туннельный эффект заключается в просачивании электрических зарядов (электронов и дырок) через потенциальный барьер и обусловлен волновыми свойствами микрочастиц. Изготовляют туннельные диоды из германия или арсенида галлия, имеющих очень малые сопротивления. Туннельные диоды отличаются малыми размерами и массой, существенной нелинейностью ВАХ, высоким быстродействием, способностью работать в широком диапазоне температур (до +600 оСдля арсенид-галлиевых приборов). Применяют туннельные диоды в СВЧ-генераторах с частотами до 10 ГГц и усилителях электрических сигналов, работающих в широком частотном и температурном диапазоне.
Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку туннелирование не может изменить полную энергию электрона, вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.
История изобретения
В начале 1920-х в России Олег Лосев обнаружил кристадинный эффект в диодах из кристаллического ZnO, выращенного гидротермально из водного раствора гидроксида цинка и цинката калия - эффект отрицательного дифференциального сопротивления.
После этого изобретения началась травля изобретателя со стороны Абрама Моисеевича Иоффе и Абрама Фёдоровича Иоффе, в результате чего оно было забыто и переоткрыто в 1958 году на других материалах.
Туннельный диод был изготовлен в 1958 году Лео Эсаки, который в 1973 году получил Нобелевскую премию по физике за экспериментальное обнаружение эффекта туннелирования электронов в этих диодах.