
- •1 Вопрос
- •Инжекция и экстракция носителей заряда
- •Что следует выделить:
- •Уровень инжекции
- •2 Вопрос Полупроводниковый диод
- •Диод в состоянии покоя
- •Обратное включение диода
- •Прямое включение диода
- •Недостатки реального полупроводникового диода
- •Принцип работы выпрямительного диода
- •3 Вопрос Туннельный диод
- •4 Вопрос
- •Принцип действия
- •Области применения
- •5 Вопрос
- •Устройство и принцип действия
- •6 Вопрос Схемы включения бтп
- •7.Статические характеристики бпт
- •8. Применение бпт в усилительном и ключевом режиме.
- •9. Усилители мощности, особенности построения
- •10 Трансформаторный усилитель мощности Усилитель низкой частоты
- •11 Усилитель-выбор рабочей точки
- •12)Полевые транзисторы с индуцированным каналом
- •13) Мдп транзистор
- •14) Тиристор
- •15)Динистор
- •17)Схема Усилителя с оэ, шумы усилителя, обоснование введения обратных связей
- •18 Вопрос Характеристики многокаскадных усилителей
- •19 Вопрос генератор пилообразного напряжения
- •20 Вопрос Блокинг-генератор
- •21 Вопрос Триггер
- •22 Вопрос Ждущий режим мультивибратора
- •Как работает ждущий мультивибратор?
- •23 Вопрос
- •Исследование мультивибратора, работающего в автоколебательном режиме
- •Цифровые устройства - алгебра логики
- •1. Закон одинарных элементов
- •2. Законы отрицания a. Закон дополнительных элементов
- •B. Двойное отрицание
- •C. Закон отрицательной логики
- •3. Комбинационные законы
- •A. Закон тавтологии (многократное повторение)
- •Кодирование сигналов в цифровых устройствах
- •Классификация цифровых устройств
- •Цап, ацп, Арифметическое устройство
- •Микропроцессор, устройство эвм
- •Импульсные режимы работы диода и транзистора
- •4.7. Работа транзистора в импульсном режиме.
- •4.7.1. Режим переключения.
- •4.7.2. Расчет времени включения.
- •4.7.3. Расчет времени рассасывания заряда.
- •Переходные процессы для высокого уровня инжекции
- •Процесс переключения диода с прямого направления на обратное.
Кодирование сигналов в цифровых устройствах
По виду кодирования электрических сигналов двоичными цифрами элементы цифровой техники делятся на потенциальные, импульсные и импульсно-потенциальные.
В потенциальных элементах нулю и единице соответствуют два резко отличающихся уровня – высокий и низкий. При этом напряжения могут быть как положительными, так и отрицательными относительно корпуса, электрический потенциал которого принимается за нулевой.
Различают элементы, работающие в положительной и отрицательной логике (рис. 3).
Рис. 3. Кодирование электрических сигналов в потенциальных элементах
Таким образом, для положительной логики характерны более высокие значения напряжений, которые соответствуют логической единице.
У импульсных цифровых устройств логическими нулями и единицами кодируются перепады напряжений, наличие или отсутствие импульса, полярность импульса.
В цифровых схемах используются также импульсно-потенциальные элементы, в которых одна часть сигналов кодируется различными уровнями напряжения, а другая – перепадами напряжения.
Классификация цифровых устройств
В общем случае на вход цифрового устройства поступает множество двоичных переменных X(x1 … xn), а с выхода снимается множество двоичных переменных Y(y1 … yk),. Устройство при этом осуществляет определенную логическую функцию между входными и выходными переменными.
Цифровые устройства можно разделить на комбинационные и последовательностные.
В комбинационных – значения Y в течение каждого такта определяются только значениями X в этом же такте. Такие устройства состоят из логических элементов.
В последовательностных – значения Y определяются значениями X, как в течение рассматриваемого такта, так и существовавшими в ряде предыдущих тактов. Для этого в последовательностных устройствах, кроме логических должны быть еще и запоминающие элементы.
Структура последовательностного и комбинационного устройства приведена на рис. 4.
а б
Рис. 4. Структура комбинационного а и последовательностного б цифровых устройств
Запоминающее устройство может хранить информацию не бесконечно большого, а только ограниченного числа тактов, поэтому цифровые устройства с памятью называют конечными автоматами, к которым относят все ЭВМ.
Таблицы, показывающие взаимосвязь между входными и выходными переменными комбинационных устройств, называют таблицами истинности. Алгебраическая форма этих связей представляет систему уравнений
y1 = y1 (x1 , x2 , …, xn),
yk = yk (x1 , x2 , …, xn).
В общем виде в последовательностных устройствах выходные переменные yiзависят не только от входных сигналов xm , но и от сигналов элементов памяти, поступающих за этот же такт.
В частности, в автоматах Мили выходные сигналы формируются именно таким образом, т. е.
yi t+1 = fi (x1 , x2 , …, xn , z1 , z2 , …, zs)t+1.
Это выражение называется функцией выхода автомата Мили.
В автоматах Мура выходные сигналы являются функциями только сигналов элементов памяти в этом же такте, т.е.
yi t+1 = fi (z1 , z2 , …, zs)t+1.
Это выражение называется функцией выхода автомата Мура.
Для описания работы последовательностных устройств используются таблицы переходов состояний.
Таблицы истинности соответствуют только статическим или установившимся режимам работы цифровых устройств. При изменении входных сигналов в комбинационной схеме из-за инерционности логических элементов в ней начинает протекать переходный процесс. Максимальная длительность переходного процесса определяется максимальным числом последовательно включенных ЛЭ. Входные сигналы xm изменяются не мгновенно, а в течение некоторого времени фф , т. е. сигналы имеют фронты конечной длительности. В течение этого времени входные сигналы имеют неопределенное значение. По этой причине, а также из-за задержек сигналов в ЛЭ выходные сигналы комбинационной схемы в течение переходного процесса могут принимать значения не соответствующие описывающим их функциям. Это явление называют переходными состояниями или “гонками”. Появление кратковременных ложных значений выходных сигналов комбинационной схемы может привести к неправильному срабатыванию других схем, подключенных к ее выходам.
Цифровые устройства можно разделить на асинхронные и синхронные. В асинхронных изменение входных сигналов сразу же вызывает изменение выходных сигналов. В синхронных изменение выходных сигналов, соответствующее новому сочетанию входных, происходит только после подачи синхронизирующих (тактовых) импульсов, управляющих работой автомата. Период синхроимпульсов является, таким образом, минимальным временем между выполнением автоматом двух последовательных микроопераций, т.е. служит единицей машинного времени, называемой тактом. В зависимости от структуры автомата за один такт могут выполняться одна или несколько микроопераций, если они совмещены во времени.
В асинхронных устройствах отсутствуют синхронизирующие сигналы, поэтому в их структуры обычно включаются специальные схемы, которые после окончания каждой микрооперации вырабатывают сигнал готовности к выполнению следующей микрооперации.
Синхронные устройства, в принципе, имеют меньшее быстродействие, чем асинхронные, однако в них легко устраняются опасные состязания.