
- •1.Машины, критерии их испол. Задачи тмм.
- •2.Основные виды механизмов.
- •3.Строение механизмов. Классификация звеньев, пар.
- •4.Подвижность механизма.
- •7.Кинематические характеристики механизмов.
- •8.Способ засечек.
- •9.Способ ложных положений.
- •10.План скоростей, свойства, применение.
- •11.План ускорений, свойства, применение.
- •12.Графическое дифференцирование, методы, применение.
- •13.Графическое интегрирование, методы, применение.
- •14.Определение передаточных функций.
- •15.Аналитическое определение кинематических характеристик.
- •16.Задачи геометрического анализа механизмов.
- •17.Задачи кинематического синтеза механизмов, ограничения.
- •19.Основная теорема зацепления.
- •21.Эвольвента окружности, уравнение, свойства.
- •23.Способы изготовления зубчатых колёс. Подрезание, заострение.
- •24.Параметры эвольвентного зацепления. Коэффициент перекрытия.
- •25. Параметры эвольвентного зацепления. Коэффициент скольжения.
- •26. Параметры эвольвентного зацепления. Коэффициент удельного давления.
- •27.Зубчатые механизмы с неподвижными осями. Расчёт.
- •28.Зубчатые механизмы с подвижными осями. Расчёт.
- •29.Выбор схемы планетарного редуктора.
- •Ис. 1. Однорядный планетарный редуктор. (Схема 1.)
- •30.Выбор чисел зубьев планитарного редуктора.
- •31.Виды кулачковых механизмов, выбор.
- •32.Законы движения км, выбор.
- •33.Основные размеры км с толкателем.
- •34. Основные размеры км с коромыслом.
- •36.Задачи силового расчёта, теоретические предпосылки.
- •37.Аналитический метод силового расчёта.
- •38.Графический метод силового расчёта.
- •39.Определение уравновешивающей силы.
- •40.Приведение сил(моментов).
- •41.Приведение масс, момента инерции.
- •49.Уравновешивание механизмов.
11.План ускорений, свойства, применение.
Планом скоростей (ускорений) механизма называют чертеж, на котором скорости (ускорения) различных точек изображены в виде векторов, показывающих направления и величины (в масштабе) этих скоростей (ускорений) в данный момент времени.
Свойства:
1)каждая фигура на плане механизма имеет себе подобную на плане скоростей
2)все абсолютные скорости выходят из полюса плана скоростей
3)при помощи плана скоростей можно определить скорости всех точек, всех звеньев по величине и направлению
12.Графическое дифференцирование, методы, применение.
Существует три метода графического дифференцирования: метод касательных, метод хорд и метод приращений.
Метод касательных
Метод касательных основан на геометрической интерпретации производной. При использовании метода кинематических диаграмм вначале дифференцируется диаграмма перемещений для получения графика (диаграммы) скоростей. Рассмотрим графическое дифференцирование на этом примере.
V = ds/dt, но т.к. аналитическое выражение для перемещений в данном случае отсутствует, то представляем значения перемещений и времени через отрезки на диаграмме перемещений:
тогда
Но
отношение бесконечно малого приращения
функции к бесконечно малому приращению
аргумента на графике представляет собой
тангенс угла наклона касательной к
данной кривой в рассматриваемой точке,
т.е.
Используя данное обстоятельство, диаграмму скоростей строят в следующем порядке (рисунок 11):
- проводят касательные к диаграмме перемещений в намеченных положениях;
- слева от начала координат на оси абсцисс будущей диаграммы скоростей отмечают полюс P на некотором расстоянии H (которое называется полюсным расстоянием);
- из полюса проводят лучи, параллельные проведенным касательным на диаграмме перемещений. Эти лучи отсекают на оси ординат будущей диаграммы скоростей отрезки
oi*=H.tg αi
Таким образом, и скорость в i-том положении и отрезки oi* пропорциональны tg αi , а значит отрезки oi* пропорциональны Vi ( скорости исследуемого звена в соответствующем положении механизма), т.е. они представляют собой изображение скорости в виде отрезка в некотором масштабе – Vi .
или
т.е.
где Kv – масштаб диаграммы скоростей по оси ординат в (м/с)/мм.
Далее отрезки oi* переносят в соответствующие положения, отмеченные на оси абсцисс, и, соединив концы отрезков плавной кривой, получают диаграмму скоростей исследуемого звена. Аналогично строится диаграмма ускорений. При этом масштаб ускорений
Теоретически метод касательных самый точный из графических методов дифференцирования, т.к. дает значение мгновенной скорости (ускорения) именно в том положении, в котором проведена касательная.
Однако из-за трудности точного проведения касательных (и сама дифференцируемая кривая, построенная по точкам, имеет отклонения от ее теоретической функции), практическая точность этого метода весьма низкая, поэтому он используется редко (обычно когда надо проанализировать характер движения звена без получения конкретных численных результатов).
Метод хорд
При графическом дифференцировании методом хорд последовательность действий точно такая же, что и при методе касательных, но вместо касательных к дифференцируемому графику в конкретных положениях проводят хорды на выделенных участках.
Метод приращений
Метод приращений является частным случаем метода хорд, когда полюсное расстояние принимается равным выделенным участкам на оси абсцисс (при этом все участки должны иметь одинаковую величину H= Δt). В этом случае приращение перемещений на выделенном участке представляет собой среднюю скорость на данном участке в некотором масштабе.