Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
165.77 Кб
Скачать

Введение.

На сегодняшний день вопрос о ядерной и термоядерной энергии является одним из самых актуальных, именно поэтому вопросы дальнейшего развития этой отрасли заботят ученых и специалистов по всему миру. Сейчас активно в качестве альтернативных сырьевых ресурсов используются газ, уголь, торф, энергия деления атома (атомная энергетика ).Но мы прекрасно понимаем что они не способны заменить полностью нефть как сырья для получения энергии. Да и запасы того же природного газа не бесконечны, используя данные альтернативные сырьевые ресурсы мы лишь отсрочим энергетический кризис.

  Ученые прекрасно осознают наступающую на пятки проблему, и создают и изучают альтернативные источники энергии. На текущий момент ученые работают над проектами подразумевающие использование:

•  Биогаза

•  Биодизельного топливо

•  Биоэтанола

•  Ветроэнергетики

•  Водородная энергетики

•  Геотермальная энергии

•  Солнечных элементов

•  Ядерной энергетики

•  Термоядерная энергетика (на основе использования Гелия 3)

Рассмотрим два последних пункта отдельно:

Ядерная энергетика.

Ядерная энергия (атомная энергия) — энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях и радиоактивном распаде. Атомные электростанции, использующие эту энергию, в 2012 году производили 13 % мировой электроэнергии и 5,7 % общего мирового производства энергии[1][2]. Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на 2013 год насчитывается[3] 436 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию)[4] реакторов в 31 стране мира.[5]. Кроме того, на разных стадиях сооружения находится ещё 73 энергетических ядерных реакторов в 15 странах[3]. В настоящее время в мире имеется также около 140 действующих надводных кораблей и подводных лодок, использующих в общей сложности около 180 реакторов.[6][7][8] Несколько ядерных реакторов были использованы в советских и американских космических аппаратах, часть из них всё ещё находится на орбите. Кроме того, в ряде приложений используется ядерная энергия, генерируемая в нереакторных источниках (например, в термоизотопных генераторах).

При этом не прекращаются дебаты об использовании ядерной энергии[9][10]. Противники ядерной энергетики (в частности, такие организации, как «Гринпис») считают, что использование ядерной энергии угрожает человечеству и окружающей среде[11][12][13]. Защитники ядерной энергетики (МАГАТЭ, Всемирная ядерная ассоциация и т. д.), в свою очередь, утверждают[14], что этот тип энергетики позволяет снизить выбросы парниковых газов в атмосферу и при нормальной эксплуатации несёт значительно меньше рисков для окружающей среды, чем другие типы энергогенерации.

Физические основы:

Открытие нейтрона в 1932 году (Джеймс Чедвик) можно считать началом современной ядерной физики.[15]

Боровская модель атома представляет из себя положительно заряженное ядро, где сконцентрирована почти вся масса атома (оно состоит из нейтронов и протонов), в окружении нескольких оболочек из очень лёгких отрицательно заряженных частиц (электронов). Размер атома оказывается порядка ангстрема (10−10 м), в то время как размеры ядра составляют от одного до нескольких ферми (10−15 м), то есть ядро меньше атома в 100 000 раз.

Электрически нейтральные атомы содержат одинаковое число электронов и протонов. Химический элемент однозначно определяется числом протонов в ядре, это число называется атомным номером (Z). Число нейтронов (N) в ядрах атомов данного элемента может варьироваться. Для малых Z это число у бета-стабильных ядер близко к числу протонов (N ≈ Z), но с увеличением Z, чтобы ядро оставалось стабильным, число нейтронов должно расти быстрее, чем Z. Атомы, которые отличаются только числом нейтронов в ядре, называются изотопами одного и того же элемента. Общее число нуклонов (то есть протонов и нейтронов) в ядре называется массовым числом A = Z + N.

Для названия изотопа обычно используется буквенное обозначение химического элемента с верхним индексом — атомной массой и (иногда) нижним индексом — атомным номером; например, изотоп уран-238 может быть записан в виде

Нуклоны, из которых состоят ядра, обладают относительно малой массой (около 1 а.е.м.), электрический заряд протона положителен, а нейтрон не заряжен. Поэтому, если учитывать только существование электромагнитных и гравитационных сил, ядро ​​будет нестабильно (одноимённо заряженные частицы будут отталкиваться, разрушая ядро, а массы нуклонов недостаточно велики, чтобы гравитация могла противодействовать кулоновскому отталкиванию), что делало бы невозможным существование материи. Из очевидного факта существования материи вытекает, что в модель необходимо добавить третью силу, которую назвали сильным взаимодействием (строго говоря, между нуклонами в ядре действует главным образом не само сильное взаимодействие как таковое, а остаточные ядерные силы, обусловленные сильным взаимодействием). Эта сила должна, в частности, быть очень интенсивной, притягивающей на очень коротких расстояниях (на расстояниях порядка размеров ядра) и отталкивающей на ещё более коротких расстояниях (порядка размеров нуклона), центральной в определённом диапазоне расстояний, зависящей от спина и не зависящей от типа нуклона (нейтроны или протоны). В 1935 году Хидеки Юкава создал первую модель этой новой силы, постулировав существование новой частицы, пиона. Легчайший из мезонов он отвечает за бо́льшую часть потенциала между нуклонами на расстоянии порядка 1 фм. Потенциал Юкавы, который адекватно описывает взаимодействие двух частиц со спинами и , можно записать в виде:

Другие эксперименты, проводившиеся на ядрах, показали, что их форма должна быть приблизительно сферической с радиусом фм, где A - атомная масса, т.е. количество нуклонов. Отсюда вытекает, что плотность ядер (и количество нуклонов на единицу объёма) постоянна. В самом деле, т.е. объём пропорционален А. Так как плотность рассчитывается путём деления массы на объём, Это привело к описанию ядерной материи как несжимаемой жидкости и к появлению капельной модели ядра как фундаментальной модели, необходимой для описания деления ядер.

Ядерная энергия (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях). Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер; и те, и другие реакции сопровождаются выделением энергии.К примеру при делении одного ядра выделяется около 200 МэВ. При полном же делении ядер, находящихся в 1 г урана, выделяется энергия 2,3*104 кВтч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер используется в ядерных реакторах.

Преимущества:

•  низкие и устойчивые (по отношению к стоимости топлива) цены на электроэнергию;

•  среднее воздействие на экологическую среду.

 

Недостатки атомных станций:

•  Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

•  Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

•  При низкой вероятности инцидентов, последствия их крайне тяжелы

•  Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.