
- •3)Масса, сила, импульс.
- •Третий закон Ньютона
- •Современная формулировка
- •Теорема Гюйгенса — Штейнера
- •8) Закон Сохранения Импульса
- •Работа переменной силы.
- •Закон изменения и сохранения полной механической энергии
- •11) Закон изменения и сохранения полной механической энергии
- •13) Постулаты сто
- •14)Релятивистская динамика
- •Релятивистский импульс
- •Уравнение релятивистской динамики
- •Закон взаимосвязи массы и энергии
- •Кпд тепловой машины Карно. Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
- •Статистическое определение энтропии: принцип Больцмана
- •31) Теорема Гаусса для электрического поля в среде.
- •38)Закон Ома и Джоуля Ленца в интегральной и дифференциальной форме
- •40) Работа и мощность тока
- •Раздел ivмагнетизм
- •41. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции. Закон Био-Савара-Лапласа. Поле прямого и кругового потока.
- •42. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •43.Сила лоренца и сила ампера. Взаимодействие токов. Движение заряженных частиц в магнитной и электрических полях.
- •44. Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент. Работа перемещения проводника и контура с током в магнитном поле.
- •Работа по перемещению проводника и контура с током в магнитном поле
- •45. Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность магнитного поля. Магнитные цепи.
- •46. Явление электромагнитной индукции. Закон фарадея – максвелла. Правило ленца.
- •47. Самоиндукция. Индуктивность. Индуктивность длинного соленоида.
- •48. Токи при замыкании и размыкании (экстратоки).
- •49. Энергия и плотность энергии магнитного поля.
- •Раздел V колебания и волны
- •50. Понятие о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и с помощью векторных диаграмм.
- •51. Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур. Энергетические соотношения для осцилляторов.
- •52. Дифференциальное уравнение свободных затухающих колебаний и его решение. Коэффициент затухания, логарифмический декремент, добротность.
- •53. Вынужденные колебания осциллятора под действием синусоидальной силы. Амплитуда и фаза вынужденных колебаний. Резонансные кривые.
- •54. Волновое уравнение для электромагнитного поля. Свойства электромагнитных волн. Энергия электромагнитных волн. Вектор пойнтинга. Излучение диполя.
- •Раздел viквантовая физика, физика атомного ядра.
- •55. Тепловое равновесное излучение и его характеристики. Закон кирхгофа. Абсолютно черное тело. Законы излучения абсолютно черного тела.
- •56. Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •57. Эффект комптона, его теория явления. Фотоны. Энергия, масса, импульс фотона.
- •58. Связь волновых и корпускулярных свойств излучения (корпускулярно- волновой дуализм).
- •59. Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза де бройля и ее опытное обоснование.
- •60. Соотношение неопределенностей гейзенберга как проявление корпускулярно-волнового дуализма свойств вещества. Применение соотношений неопределенностей к решению квантово- механичсеких задач
- •61. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •62. Понятие об уравнении шредингера как основном уравнении нерелятивистской квантовой механики. Принцип соответствия бора.
- •63. Решение ур-я шредингера для атома водорода. Полная система квантовых чисел. Принцип паули.
- •64. Общие сведения о квантовых статистиках. Функции распределения ферми-дирака и бозе-эйнштейна. Бозоны и фермионы. Принцип неразличимости тождественных частиц.
- •65.Зонная теория твердых тел. Металлы, диэлектрики, полупроводники. Собственная и примесная проводимости полупроводников. Фотопроводимость.
- •66. Атомное ядро. Строение и основные свойства ядра. Ядерные силы. Модели ядра
- •67. Энергия связи ядер. Проблема источников жнергии. Ядерные реакции.
- •68. Радиоактивность. Закон радиоактивного распада.
14)Релятивистская динамика
Теперь мы готовы к тому, чтобы с более общей точки зрения исследовать, как преобразования Лоренца изменяют законы механики. [До сих пор мы только объясняли, как изменяются длины и времена, но не объяснили, как получить измененную формулу для то, уравнение (15.1). Это будет сделано в следующей главе.] Изучение следствий формулы Эйнштейна для массы т в механике Ньютона мы начнем с закона силы. Сила есть быстрота изменения импульса, т. е. F = d(mv)/dt, Импульс по-прежнему равен mv, но теперь
|
Это законы Ньютона в записи Эйнштейна. При этом видоизменении, если действие и противодействие по-прежнему равны (может, не в каждый момент, но по крайней мере после усреднения по времени), то, как и раньше, импульс должен сохраняться, но сохраняющейся величиной является не старое mv при постоянном m, а выражение (15.10) с переменной массой. С таким изменением в формуле для импульса сохранение импульса по-прежнему будет существовать.
Посмотрим теперь, как импульс зависит от скорости. В ньютоновой механике он ей пропорционален. В релятивистской механике в большом интервале скоростей (много меньших с) они также примерно пропорциональны [см. (15.10)], потому что корень мало отличается от единицы. Но когда v почти равно с, то корень почти равен нулю и импульс поэтому беспредельно растет.
Что бывает, когда на тело долгое время воздействует постоянная сила? В механике Ньютона скорость тела беспрерывно будет возрастать и может превысить даже скорость света. В релятивистской же механике это невозможно. В теории относительности беспрерывно растет не скорость тела, а его импульс, и рост этот сказывается не на скорости, а на массе тела. Со временем ускорение, т. е. изменения в скорости, практически исчезает, но импульс продолжает расти. Поскольку сила приводит к очень малым изменениям в скорости тела, мы, естественно, считаем, что у тела громадная инерция. Но как раз это самое и утверждает релятивистская формула (15.10) для массы тела; она говорит, что инерция крайне велика, когда v почти равно с. Разберем пример. Чтобы отклонить быстрые электроны в синхротроне Калифорнийского Технологического института, необходимо магнитное поле, в 2000 раз более сильное, чем следует из законов Ньютона. Иными словами, масса электронов в синхротроне в 2000 раз больше их нормальной массы, достигая массы протона! Если т в 2000 раз больше m0, то 1— v2/c2 равно 1/4 000 000, или v отличается от с на 1/8 000 000, т. е. скорость электронов вплотную подходит к скорости света. Если электроны и свет одновременно отправятся в соседнюю лабораторию (находящуюся, скажем, в 200 м), то кто явится первым? Ясное дело, свет: он всегда движется быстрее. Но насколько быстрее? Трудно сказать, насколько раньше во времени, но зато можно сказать, на какое расстояние отстанут электроны: на 1/30 мм, т. е. на 1/3 толщины этого листка бумаги! Масса электронов в этих состязаниях чудовищна, а скорость не выше скорости света.
На чем еще скажется релятивистский рост массы? Рассмотрим движение молекул газа в баллоне. Если газ нагреть, скорость молекул возрастет, а вместе с нею и их масса. Газ станет тяжелее. Насколько?
Разлагая m0/√(1 - v2/c2) = m0(1 - v2/c2)-1/2 в ряд по формуле бинома Ньютона, можно найти приближенно рост массы при малых скоростях. Получается
|
Из формулы ясно, что при малых v ряд быстро сходится и первых двух-трех членов здесь вполне достаточно. Значит, можно написать
|
где второй член и выражает рост массы за счет повышения скорости. Когда растет температура, v2 растет в равной мере, значит, увеличение массы пропорционально повышению температуры. Но 1/2m0v2— это кинетическая энергия в старомодном, ньютоновом смысле этого слова. Значит, можно сказать, что прирост массы газа равен приросту кинетической энергии, деленной на с2, т. е. Δm = Δ(к.э.)/с2.