
- •3)Масса, сила, импульс.
- •Третий закон Ньютона
- •Современная формулировка
- •Теорема Гюйгенса — Штейнера
- •8) Закон Сохранения Импульса
- •Работа переменной силы.
- •Закон изменения и сохранения полной механической энергии
- •11) Закон изменения и сохранения полной механической энергии
- •13) Постулаты сто
- •14)Релятивистская динамика
- •Релятивистский импульс
- •Уравнение релятивистской динамики
- •Закон взаимосвязи массы и энергии
- •Кпд тепловой машины Карно. Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
- •Статистическое определение энтропии: принцип Больцмана
- •31) Теорема Гаусса для электрического поля в среде.
- •38)Закон Ома и Джоуля Ленца в интегральной и дифференциальной форме
- •40) Работа и мощность тока
- •Раздел ivмагнетизм
- •41. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции. Закон Био-Савара-Лапласа. Поле прямого и кругового потока.
- •42. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •43.Сила лоренца и сила ампера. Взаимодействие токов. Движение заряженных частиц в магнитной и электрических полях.
- •44. Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент. Работа перемещения проводника и контура с током в магнитном поле.
- •Работа по перемещению проводника и контура с током в магнитном поле
- •45. Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность магнитного поля. Магнитные цепи.
- •46. Явление электромагнитной индукции. Закон фарадея – максвелла. Правило ленца.
- •47. Самоиндукция. Индуктивность. Индуктивность длинного соленоида.
- •48. Токи при замыкании и размыкании (экстратоки).
- •49. Энергия и плотность энергии магнитного поля.
- •Раздел V колебания и волны
- •50. Понятие о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и с помощью векторных диаграмм.
- •51. Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур. Энергетические соотношения для осцилляторов.
- •52. Дифференциальное уравнение свободных затухающих колебаний и его решение. Коэффициент затухания, логарифмический декремент, добротность.
- •53. Вынужденные колебания осциллятора под действием синусоидальной силы. Амплитуда и фаза вынужденных колебаний. Резонансные кривые.
- •54. Волновое уравнение для электромагнитного поля. Свойства электромагнитных волн. Энергия электромагнитных волн. Вектор пойнтинга. Излучение диполя.
- •Раздел viквантовая физика, физика атомного ядра.
- •55. Тепловое равновесное излучение и его характеристики. Закон кирхгофа. Абсолютно черное тело. Законы излучения абсолютно черного тела.
- •56. Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •57. Эффект комптона, его теория явления. Фотоны. Энергия, масса, импульс фотона.
- •58. Связь волновых и корпускулярных свойств излучения (корпускулярно- волновой дуализм).
- •59. Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза де бройля и ее опытное обоснование.
- •60. Соотношение неопределенностей гейзенберга как проявление корпускулярно-волнового дуализма свойств вещества. Применение соотношений неопределенностей к решению квантово- механичсеких задач
- •61. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •62. Понятие об уравнении шредингера как основном уравнении нерелятивистской квантовой механики. Принцип соответствия бора.
- •63. Решение ур-я шредингера для атома водорода. Полная система квантовых чисел. Принцип паули.
- •64. Общие сведения о квантовых статистиках. Функции распределения ферми-дирака и бозе-эйнштейна. Бозоны и фермионы. Принцип неразличимости тождественных частиц.
- •65.Зонная теория твердых тел. Металлы, диэлектрики, полупроводники. Собственная и примесная проводимости полупроводников. Фотопроводимость.
- •66. Атомное ядро. Строение и основные свойства ядра. Ядерные силы. Модели ядра
- •67. Энергия связи ядер. Проблема источников жнергии. Ядерные реакции.
- •68. Радиоактивность. Закон радиоактивного распада.
44. Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент. Работа перемещения проводника и контура с током в магнитном поле.
Магнитный момент тока это произведение площади контура, в котором он протекает на силу тока в нем. Магнитный момент направлен перпендикулярно плоскости контура. Это направление можно определить с помощью правила буравчика. Если буравчик вращать по направлению движения тока в контуре, то его поступательное движение укажет направление магнитного момента. Для наглядности рассмотрим действие магнитного момента тока на примере. Возьмем прямоугольную рамку с током. Поместим ее в постоянное магнитное поле, так чтобы плоскость рамки была параллельна вектору магнитной индукции.
Рисунок 1 — поясняет принцип действия магнитного момента
Как известно на проводник, с током помещённый в магнитное поле действует сила Лоренца. Направление, которой можно определить с помощью правила левой руки. Рассматривая действие силы Лоренца на стороны рамки в отдельности можно прийти к выводу, что на них будут действовать силы равные по величине, но противоположные по знаку. Поскольку эти силы зависят отдлинны проводника силы тока в нем и угла между направлением тока и вектором магнитной индукции. А ток в этом контуре протекает один и тот же. Длинна сторон рамки одинакова. И стороны рамки находятся параллельно магнитному полю. Но ток движется в противоположные стороны. Значит и силы будут направлены противоположно. Две другие стороны рамки не будут взаимодействовать с полем поскольку ток в них течет параллельно силовым линиям поля. Следовательно, исходя из закона Лоренца сила, действующая на них, будет равна нулю. Далее если мысленно провести вдоль рамки вертикальную осевую линию. То силы, действующие на ее края, будут стремиться ее развернуть. До тех пор пока рамка не примет такое положение, при котором все силы не уравновесятся. При этом рамка повернется своей плоскостью перпендикулярно силовым линия поля.
На
рамку с током I,
помещенную во внешнее однородное
магнитное поле с индукцией
действует
момент сил
Момент
сил выражается соотношением:
M = I S B sin α = pmB sin α , |
где S –
площадь рамки, α –
угол между нормалью
к
плоскости рамки и вектором
Векторная
величина
где
– единичный
вектор нормали, называется магнитным
моментом рамки. Направление вектора
связано
с направлением тока в рамке правилом
правого винта.
Работа по перемещению проводника и контура с током в магнитном поле
На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. § 111). Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, рис. 177), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.
Для определения этой работы рассмотрим проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна
Под действием этой силы проводник переместится параллельно самому себе на отрезокdx из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна
так какldx=dS — площадь, пересекаемая проводником при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,
(121.1)
т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.
Вычислим работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Предположим, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положение М', изображенное на рис. 178 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно разобьем на два соединенных своими концами проводника: AВС иCDА.
РаботаdA, совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников AВС (dA1) иCDA(dA2), т. е.
(121.2)
Силы, приложенные к участкуCDA контура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работаdA2>0. .Согласно (121.1), этаработа равна произведению силы тока I в контуре на пересеченный проводникомCDAмагнитный поток. ПроводникCDA пересекает при своем движении потокdФ0 сквозьповерхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Следовательно,
(121.3)
Силы, действующие на участок AВС контура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работаdA1<0. Проводник AВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно,
(121.4)
Подставляя (121.3) и (121.4) в (121.2), получим выражение для элементарной работы:
где dФ2—dФ1=dФ'— изменение магнитного потока сквозь площадь, ограниченную контуром с током. Таким образом,
(121.5)
Проинтегрировав выражение (121.5), определим работу, совершаемую силами Ампера, при конечном произвольном .перемещении контура в магнитном поле:
(121.6)
т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Формула (121.6) остается справедливой для контура любой формы в произвольном магнитном поле.