
- •3)Масса, сила, импульс.
- •Третий закон Ньютона
- •Современная формулировка
- •Теорема Гюйгенса — Штейнера
- •8) Закон Сохранения Импульса
- •Работа переменной силы.
- •Закон изменения и сохранения полной механической энергии
- •11) Закон изменения и сохранения полной механической энергии
- •13) Постулаты сто
- •14)Релятивистская динамика
- •Релятивистский импульс
- •Уравнение релятивистской динамики
- •Закон взаимосвязи массы и энергии
- •Кпд тепловой машины Карно. Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
- •Статистическое определение энтропии: принцип Больцмана
- •31) Теорема Гаусса для электрического поля в среде.
- •38)Закон Ома и Джоуля Ленца в интегральной и дифференциальной форме
- •40) Работа и мощность тока
- •Раздел ivмагнетизм
- •41. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции. Закон Био-Савара-Лапласа. Поле прямого и кругового потока.
- •42. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •43.Сила лоренца и сила ампера. Взаимодействие токов. Движение заряженных частиц в магнитной и электрических полях.
- •44. Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент. Работа перемещения проводника и контура с током в магнитном поле.
- •Работа по перемещению проводника и контура с током в магнитном поле
- •45. Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность магнитного поля. Магнитные цепи.
- •46. Явление электромагнитной индукции. Закон фарадея – максвелла. Правило ленца.
- •47. Самоиндукция. Индуктивность. Индуктивность длинного соленоида.
- •48. Токи при замыкании и размыкании (экстратоки).
- •49. Энергия и плотность энергии магнитного поля.
- •Раздел V колебания и волны
- •50. Понятие о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и с помощью векторных диаграмм.
- •51. Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур. Энергетические соотношения для осцилляторов.
- •52. Дифференциальное уравнение свободных затухающих колебаний и его решение. Коэффициент затухания, логарифмический декремент, добротность.
- •53. Вынужденные колебания осциллятора под действием синусоидальной силы. Амплитуда и фаза вынужденных колебаний. Резонансные кривые.
- •54. Волновое уравнение для электромагнитного поля. Свойства электромагнитных волн. Энергия электромагнитных волн. Вектор пойнтинга. Излучение диполя.
- •Раздел viквантовая физика, физика атомного ядра.
- •55. Тепловое равновесное излучение и его характеристики. Закон кирхгофа. Абсолютно черное тело. Законы излучения абсолютно черного тела.
- •56. Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •57. Эффект комптона, его теория явления. Фотоны. Энергия, масса, импульс фотона.
- •58. Связь волновых и корпускулярных свойств излучения (корпускулярно- волновой дуализм).
- •59. Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза де бройля и ее опытное обоснование.
- •60. Соотношение неопределенностей гейзенберга как проявление корпускулярно-волнового дуализма свойств вещества. Применение соотношений неопределенностей к решению квантово- механичсеких задач
- •61. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •62. Понятие об уравнении шредингера как основном уравнении нерелятивистской квантовой механики. Принцип соответствия бора.
- •63. Решение ур-я шредингера для атома водорода. Полная система квантовых чисел. Принцип паули.
- •64. Общие сведения о квантовых статистиках. Функции распределения ферми-дирака и бозе-эйнштейна. Бозоны и фермионы. Принцип неразличимости тождественных частиц.
- •65.Зонная теория твердых тел. Металлы, диэлектрики, полупроводники. Собственная и примесная проводимости полупроводников. Фотопроводимость.
- •66. Атомное ядро. Строение и основные свойства ядра. Ядерные силы. Модели ядра
- •67. Энергия связи ядер. Проблема источников жнергии. Ядерные реакции.
- •68. Радиоактивность. Закон радиоактивного распада.
40) Работа и мощность тока
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу
ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt, |
где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.
Если обе части формулы
RI = U, |
выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение
R I2 Δt = U I Δt = ΔA. |
Это соотношение выражает закон сохранения энергии для однородного участка цепи.
Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
|
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.
Электрическая мощность. Энергия, получаемая приемником или отдаваемая источником тока в течение 1 с, называется мощностью.
Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:
|
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).
Раздел ivмагнетизм
41. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции. Закон Био-Савара-Лапласа. Поле прямого и кругового потока.
Опыт показывает, что, подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, так и в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты. Название «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, создаваемого током (это явление впервые обнаружено датским физиком X.Эрстедом (1777—1851)). Электрическое поле действует как на неподвижные, так и на движущиеся в нем электрические заряды. Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды.
Характеристика магнитного поля, называется магнитной индукцией:
Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля.
Так как магнитное поле является силовым, то его, по аналогии с электрическим, изображают с помощью линиймагнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, ввинчиваемого по направлению тока, вращается в направлении линий магнитной индукции.
Линии магнитной индукции всегда замкнуты и охватывают проводники с током. Этим они отличаются от линий напряженности электростатического поля, которые являются разомкнутыми (начинаются на положительных зарядах и кончаются на отрицательных.
Закон Био — Савара — Лапласа для проводника с током I, элементdl которого создает в некоторой точкеА (рис. 164) индукцию поля dB, записывается в виде
(110.1)
гдеdl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током,r—радиус-вектор, проведанный из элементаdl проводника в точкуА поля, r — модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.
Модуль вектора dB определяется выражением
(110.2)
где — угол между векторами dl и r.
Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:
(110.3)
Расчет характеристик магнитного поля (В и Н) по приведенным формулам в общем случае сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции позволяет просто рассчитать конкретные поля. Рассмотрим два примера.
1. Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точкеА, удаленной от оси проводника на расстояниеR, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол (угол между векторамиdl и r), выразив через него все остальные величины. Из рис. 165 следует, что
(радиус дугиCD вследствие малостиdl равен r, и уголFDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что магнитная индукция, создаваемая одним элементом проводника, равна
(110.4)
Так как угол для всех элементов прямого тока изменяется в пределах от 0 до , то, согласно (110.3) и (110.4),
Следовательно, магнитная индукция поля прямого тока
(110.5)
2. Магнитное поле в центре кругового проводника с током (рис. 166). Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),
Тогда
Следовательно, магнитная индукция поля в центре кругового проводника с током