
- •1 Понятия, термины, определения, структура геоинформатики
- •2 Общее представление о гис
- •3 Области применения, связь гис с другими научными дисциплинами и технологиями
- •1 Геоинформационного картографирования
- •2 Понятие, концептуальные модели географического пространства
- •2 Пространственные координаты и картографические проекции
- •3 Анализ традиционного и геоинформационного картографирования
- •1 Виды информации в гис
- •2 Отображение объектов реального мира в гис
- •3 Методы ввода графической информации, достоинства и недостатки
- •4 Структуры и модели данных
- •5 Форматы графических файлов гис
- •1 Типы структур и выбор оптимальной структуры базы данных гис
- •2 Системы управления базами данных гис
- •1 Конфигурация, структура и функции типовой гис
- •2 Подсистемы ввода информации и вывода изображений, сбора, поиска и анализа данных
- •3 Классификация гис
- •1 Средства и основные функции пространственного анализа
- •2 Основные приемы анализа картографических изображений
- •3 Картографические способы отображения результатов анализа данных
- •1 Информационное обеспечение кадастра
- •2 Требования к картографической документации кадастра
- •3 Применение гис-технологий при создании различных гис при производстве кадастровых работ
- •1 Тенденции развития гис-технологий
- •2 Геоинформационные системы и Интернет
- •3 Интерактивные картографические ресурсы
2 Пространственные координаты и картографические проекции
Широкий спектр объектов можно группировать при заданном масштабе наблюдения на точки, линии, области и поверхности, а также классифицировать при помощи измерений их характеристик в четырех различных шкалах: номинальной, порядковой, интервалов, отношений - в зависимости от требуемого описания и степени сравнения. Далее необходимо узнать, как объекты взаимодействуют в пространстве, создавая общую картину.
Определение местоположения объекта означает, что должен быть некий механизм сообщения положения каждого наблюдаемого объекта. Первым типом такого механизма является абсолютное местоположение, дающее определенную фиксированную точку на поверхности Земли. Но прежде необходимо иметь систему координат, в которой будет выражаться это положение и которая имеет фиксированное соотношение с земной поверхностью.
Земля в первом приближении - сферический объект, с большими или меньшими отклонениями от этой формы. Если рассматривать ее в целом, то обычно удобно считать ее строго сферической. На этой сфере можно использовать некоторую сферическую систему координат, подчиняющуюся правилам геометрии. Рассматриваемая система координат имеет два набора воображаемых линий показанных на рисунке 7. Эта система угловых измерений позволяет нам обозначить абсолютное положение любой точки на земле простым указанием величин широты и долготы. С ее помощью можно описать положение любого выбранного объекта. Вдобавок, эти угловые величины могут быть легко преобразованы в футы, мили, метры или километры, позволяя измерять большие и малые расстояния на земле, с использованием соответствующих формул.
Рисунок 1 – Пространственные координаты
Однако помимо сферической (географической) системы координат существуют и другие, позволяющие описывать не только абсолютные положения объектов, но и их отношения с другими объектами в географическом пространстве.
Поскольку чаще всего имеем дело с двухмерными картами, потребуется одна или несколько систем координат, соответствующих различным проекциям. Такие системы координат на плоскости называются картографическими (геодезическими) прямоугольными системами координат, они позволяют нам точно указывать положение объектов на плоских картах.Каждый вид проекции имеет свои свойства: тип проекции и соотношение углов, площадей, расстояний, направлений и перспективы. В таблице 1 приведены некоторые проекции с их свойствами.
Таблица 1 – Свойства картографических проекций
Проекция |
Соотношение (+ сохраняются, - не сохраняются) |
||||
углов |
площадей |
расстояний |
направлений |
перспективы |
|
Географическая |
+ |
+ |
+ |
+ |
+ |
Миллера |
- |
- |
- |
- |
- |
Цилиндрическая |
- |
+ |
- |
- |
+ |
Хаммера-Аитоффа |
- |
+ |
- |
- |
- |
Меркатора |
+ |
- |
- |
- |
- |
Ортогональная |
- |
- |
- |
+ |
- |
Синусоидальная |
- |
+ |
+ |
- |
- |
Наиболее широко распространенной в ГИС системой проекции и координат является универсальная поперечная Меркатора, показанная на рисунке 8. Она используется в большинстве работ с дистанционным зондированием, подготовке топографических карт, построении баз данных природных ресурсов, так как она обеспечивает точные измерения в метрической системе, принятой в большинстве стран и научным сообществом в целом. В ней основной единицей измерения длины является метр.
Рисунок 2 – Проекция Меркатора
Каждая секция, образованная пересечением зоны и ряда, обозначается комбинацией числа и буквы, поэтому можно выделить довольно малые участки земного шара. За исключением самого северного ряда, каждая из таких секций имеет сторону около 100 км поэтому, для измерений с точностью до одного метра достаточно использовать отсчеты на север и восток из пяти десятичных знаков.