
- •Содержание
- •190202 – «Многоцелевые гусеничные и колесные машины»,
- •190205 – «Подъемно – транспортные, строительные дорожные машины и оборудования»
- •3. Рабочая программа.
- •3.1. Цели и задачи дисциплины
- •3.2. Требования к уровню освоения содержания дисциплины
- •3.3. Объём дисциплины и виды учебной работы
- •4. Содержание дисциплины.
- •4.1. Разделы дисциплины и виды занятий
- •4.2. Содержание разделов дисциплины (лекционный материал):
- •Тема 1 . Общие сведения о технических системах
- •Тема 2. Непрерывные сау
- •Тема 3. Устойчивость линейных сау
- •Тема 4. Качество процесса регулирования и методы синтеза линейных непрерывных сау
- •Тема 5. Нелинейные непрерывные стационарные сау
- •Тема 6. Микропроцессорное управление техническими системами
- •4.3. Тематика курсовых и контрольных работ
- •1. Анализ системы на идеальном усилителе*
- •2. Результаты анализа работы
- •5. Практические и лабораторные занятия
- •6. Учебно-методическое обеспечение дисциплины.
- •6. 1. Основная литература
- •6.2. Дополнительная литература
- •6.3. Средства обеспечения освоения дисциплины
- •6.4. Материально-техническое обеспечение дисциплины
- •7. Конспекты лекций
- •Развитие систем управления движением
- •Управление скоростью на тяговых режимах
- •Автоматизация управления сцеплением
- •Управление скоростью на тормозных режимах
- •Командные системы управления торможением
- •Развитие тормозных систем
- •Система автоматического регулирования зазоров в тормозных механизмах
- •Регулирование тормозных сил
- •Автоматизация тормозных систем
- •Антиблокировочные системы
- •Принцип работы и устройство антиблокировочных систем
- •Классификация антиблокировочных систем
- •Применение антиблокировочных систем на автомобиле
- •Управление направлением движения. Автоматизация рулевых устройств
- •Рулевое управление с электроприводом
- •Управление плавностью хода атс. Управляемые конструкции
- •Управление подвеской автомобилей
- •Автоматическое управление подвеской автомобилей
- •Привод рабочих органов механических объектов.
- •Привод с комбинированными энергетическими установками
- •Лекция 2. Фундаментальные принципы управления
- •Принцип разомкнутого управления
- •Принцип компенсации
- •Принцип обратной связи
- •2.1. Основные виды сау
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Лекция 3. Динамический режим сау. Уравнение динамики
- •3.1. Линеаризация уравнения динамики
- •3.2. Передаточная функция
- •3.3. Элементарные динамические звенья
- •Лекция 4. Эквивалентные преобразования структурных схем
- •С ар напряжения генератора постоянного тока
- •Лекция 5. Понятие временных характеристик
- •5.1. Переходные характеристики элементарных звеньев
- •Безынерционное (пропорциональное, усилительное) звено
- •Интегрирующее (астатическое) звено
- •Инерционное звено первого порядка (апериодическое)
- •Инерционные звенья второго порядка
- •Дифференцирующее звено
- •Лекция 6. Понятие частотных характеристик (чх)
- •Частотные характеристики типовых звеньев
- •Безынерционное звено
- •Интегрирующее звено
- •Апериодическое звено
- •Инерционные звенья второго порядка
- •Правила построения чх элементарных звеньев
- •6.3. Частотные характеристики разомкнутых одноконтурных сау
- •Лекция 7. Законы регулирования
- •Лекция 8. Понятие устойчивости системы
- •8.1. Алгебраические критерии устойчивости. Необходимое условие устойчивости
- •Критерий Рауса
- •Критерий Гурвица
- •8.2. Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерий устойчивости Найквиста
- •8.3. Понятие структурной устойчивости. Афчх астатических сау
- •8.4. Понятие запаса устойчивости
- •8.5. Анализ устойчивости по лчх
- •8.6. Теоретическое обоснование метода d-разбиений
- •Лекции 9. Прямые методы оценки качества управления
- •Оценка переходного процесса при ступенчатом воздействии.
- •Оценка качества управления при периодических возмущениях
- •Корневой метод оценки качества управления
- •Интегральные критерии качества
- •Теоретическое обоснование
- •Основные соотношения между вчх и переходной характеристикой
- •Метод трапеций
- •Лекция 10. Синтез сау
- •Включение корректирующих устройств
- •Синтез корректирующих устройств
- •Коррекция свойств сау изменением параметров звеньев
- •Изменение коэффициента передачи
- •Изменение постоянной времени звена сау
- •Лекция 11. Коррекция свойств сау включением последовательных корректирующих звеньев
- •Включение интегрирующего звена в статическую сау
- •Включение апериодического звена
- •Включение форсирующего звена
- •Включение звена со сложной передаточной функцией
- •Последовательная коррекция по задающему воздействию
- •Коррекция с использованием неединичной обратной связи
- •Компенсация возмущающего воздействия
- •8. Экзаменационные вопросы
- •9. Организация самастоятельной работы
Метод трапеций
Этот метод основан на свойствах ВЧХ, следующих из полученной ранее формулы, которые мы рассмотрим без доказательств.
1. Свойство линейности: если ВЧХ можно представить суммой P( ) = SPi( ), то каждой составляющей Pi( ) будет соответствовать составляющая переходной характеристики
,
при
этом
h(t)
=
(рис.111
а). Поэтому, если ВЧХ имеет сложную форму,
ее можно представить суммой трапециидальных
ВЧХ, примыкающих к вертикальной оси.
Затем все трапеции перерисовывают,
перенося их основания на горизонтальную
ось (рис.111 б). Каждой такой трапеции
соответствует своя составляющая
переходной характеристики hi(t),
имеющая апериодический характер (рис.111
в). Результирующая кривая строится
суммированием данных составляющих.
2. Если умножить P( ) на постоянный множитель а, то соответствующая ей h(t) также умножается на а. То есть, чем выше ВЧХ, тем выше и переходная характеристика (рис.112).
3. Если аргумент w в выражении ВЧХ P( ) умножить на постоянный множитель а, то аргумент в h(t) будет делиться на это число, то есть
То есть переходный процесс в случае P(a ) будет протекать в а раз быстрее, чем в случае P( ) (рис.113).
Р
ассмотрим
трапециидальную ВЧХ (рис.114 а). Она
характеризуется коэффициентом наклона
k
=
1
2.
Под единичной
трапецией
(рис.114 б) понимают трапецию, две стороны
которой совпадают с осями координат и
равны по 1 в соответствующих масштабах;
наклон k
может
быть различным:
P1(
)
=
.
Подставляя это определение в выражение для определения h(t) можно вычислить кривую переходного процесса, соответствующую единичной трапециидальной ВЧХ. Эти расчеты были проделаны и составлены таблицы hk -функций.
Для любой трапециидальной ВЧХ, на которые разбита реальная ВЧХ (рис.111 б), можно построить подобную ей единичную трапецию со значением k = 1 2, где 1 - частота, соответствующая перелому реальной трапеции, 2 - основание трапеции реальной ВЧХ. Для данной единичной трапеции по таблице hk-функций строят кривую hk(k,t), где t - время. Затем, используя свойства 2 и 3 масштабирования ВЧХ и переходной характеристики строят кривую переходного процесса, соответствующего данной трапециидальной ВЧХ. Причем оба описанных процесса можно совместить: сначала задаются моментом времени t, для него по таблице находят значение hk(k,t), потом умножают это значение на P(0) (масштабирование по вертикальной оси) и откладывают полученное значение на графике h(t) для времени t = t/ 2 (масштабирование по горизонтальной оси). Строя, таким образом, точки для различных моментов времени получают кривую
hi(t/ 2) = P(0) hk(k,t).
-
t
hk(k,t)
t = t/ 2
hi(t) = P(0) hk(k,t)
.....
.....
.....
После суммирования составляющих переходного процесса, соответствующих каждой трапеции, получают реальную характеристику h(t).
Описанный метод построения переходной характеристики называется методом трапеций.