- •Содержание
- •190202 – «Многоцелевые гусеничные и колесные машины»,
- •190205 – «Подъемно – транспортные, строительные дорожные машины и оборудования»
- •3. Рабочая программа.
- •3.1. Цели и задачи дисциплины
- •3.2. Требования к уровню освоения содержания дисциплины
- •3.3. Объём дисциплины и виды учебной работы
- •4. Содержание дисциплины.
- •4.1. Разделы дисциплины и виды занятий
- •4.2. Содержание разделов дисциплины (лекционный материал):
- •Тема 1 . Общие сведения о технических системах
- •Тема 2. Непрерывные сау
- •Тема 3. Устойчивость линейных сау
- •Тема 4. Качество процесса регулирования и методы синтеза линейных непрерывных сау
- •Тема 5. Нелинейные непрерывные стационарные сау
- •Тема 6. Микропроцессорное управление техническими системами
- •4.3. Тематика курсовых и контрольных работ
- •1. Анализ системы на идеальном усилителе*
- •2. Результаты анализа работы
- •5. Практические и лабораторные занятия
- •6. Учебно-методическое обеспечение дисциплины.
- •6. 1. Основная литература
- •6.2. Дополнительная литература
- •6.3. Средства обеспечения освоения дисциплины
- •6.4. Материально-техническое обеспечение дисциплины
- •7. Конспекты лекций
- •Развитие систем управления движением
- •Управление скоростью на тяговых режимах
- •Автоматизация управления сцеплением
- •Управление скоростью на тормозных режимах
- •Командные системы управления торможением
- •Развитие тормозных систем
- •Система автоматического регулирования зазоров в тормозных механизмах
- •Регулирование тормозных сил
- •Автоматизация тормозных систем
- •Антиблокировочные системы
- •Принцип работы и устройство антиблокировочных систем
- •Классификация антиблокировочных систем
- •Применение антиблокировочных систем на автомобиле
- •Управление направлением движения. Автоматизация рулевых устройств
- •Рулевое управление с электроприводом
- •Управление плавностью хода атс. Управляемые конструкции
- •Управление подвеской автомобилей
- •Автоматическое управление подвеской автомобилей
- •Привод рабочих органов механических объектов.
- •Привод с комбинированными энергетическими установками
- •Лекция 2. Фундаментальные принципы управления
- •Принцип разомкнутого управления
- •Принцип компенсации
- •Принцип обратной связи
- •2.1. Основные виды сау
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Лекция 3. Динамический режим сау. Уравнение динамики
- •3.1. Линеаризация уравнения динамики
- •3.2. Передаточная функция
- •3.3. Элементарные динамические звенья
- •Лекция 4. Эквивалентные преобразования структурных схем
- •С ар напряжения генератора постоянного тока
- •Лекция 5. Понятие временных характеристик
- •5.1. Переходные характеристики элементарных звеньев
- •Безынерционное (пропорциональное, усилительное) звено
- •Интегрирующее (астатическое) звено
- •Инерционное звено первого порядка (апериодическое)
- •Инерционные звенья второго порядка
- •Дифференцирующее звено
- •Лекция 6. Понятие частотных характеристик (чх)
- •Частотные характеристики типовых звеньев
- •Безынерционное звено
- •Интегрирующее звено
- •Апериодическое звено
- •Инерционные звенья второго порядка
- •Правила построения чх элементарных звеньев
- •6.3. Частотные характеристики разомкнутых одноконтурных сау
- •Лекция 7. Законы регулирования
- •Лекция 8. Понятие устойчивости системы
- •8.1. Алгебраические критерии устойчивости. Необходимое условие устойчивости
- •Критерий Рауса
- •Критерий Гурвица
- •8.2. Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерий устойчивости Найквиста
- •8.3. Понятие структурной устойчивости. Афчх астатических сау
- •8.4. Понятие запаса устойчивости
- •8.5. Анализ устойчивости по лчх
- •8.6. Теоретическое обоснование метода d-разбиений
- •Лекции 9. Прямые методы оценки качества управления
- •Оценка переходного процесса при ступенчатом воздействии.
- •Оценка качества управления при периодических возмущениях
- •Корневой метод оценки качества управления
- •Интегральные критерии качества
- •Теоретическое обоснование
- •Основные соотношения между вчх и переходной характеристикой
- •Метод трапеций
- •Лекция 10. Синтез сау
- •Включение корректирующих устройств
- •Синтез корректирующих устройств
- •Коррекция свойств сау изменением параметров звеньев
- •Изменение коэффициента передачи
- •Изменение постоянной времени звена сау
- •Лекция 11. Коррекция свойств сау включением последовательных корректирующих звеньев
- •Включение интегрирующего звена в статическую сау
- •Включение апериодического звена
- •Включение форсирующего звена
- •Включение звена со сложной передаточной функцией
- •Последовательная коррекция по задающему воздействию
- •Коррекция с использованием неединичной обратной связи
- •Компенсация возмущающего воздействия
- •8. Экзаменационные вопросы
- •9. Организация самастоятельной работы
8.3. Понятие структурной устойчивости. Афчх астатических сау
САУ может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.
САУ, неустойчивые по первой причине называются структурно неустойчивыми. Это означает, что изменением параметров САУ нельзя добиться ее устойчивости, нужно менять ее структуру.
Н
апример,
если САУ состоит из любого количества
инерционных и колебательных звеньев,
она имеет вид, показанный на рис.84. При
увеличении коэффициента усиления САУ
K
каждая точка ее АФЧХ удаляется от начала
координат, пока при некотором значении
Kкрит
АФЧХ не пересечет точку (-1,
j0).
При дальнейшем увеличении K,
САУ будет неустойчива. И наоборот, при
уменьшении K
такую САУ в принципе возможно сделать
устойчивой, поэтому ее называют структурно
устойчивой.
Если
САУ астатическая, то при ее размыкании
характеристическое уравнение можно
представить в виде: p
D1p(p)
= 0,
где
n
- порядок
астатизма,
равный количеству последовательно
включенных интеграторов. Это уравнение
имеет нулевые корни, поэтому при
0,
АФЧХ стремится к
(рис.83
в и 83 г). Например, пусть Wр(p)
=
,
здесь
=
1,
тогда АФЧХ разомкнутой САУ:
W(j
)
=
=
P(
)
+ jQ(
).
Т
ак
как порядок знаменателя больше порядка
числителя, то при
0
имеем P(
)
-
,
Q(
)
-j
.
Подобная АФЧХ представлена на рис.85.
Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0). В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при 0, ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, САУ, имеющая одно интегрирующее звено, является структурно устойчивой.
Е
сли
САУ имеет два интегрирующих звена
(порядок астатизма
=
2),
ее АФЧХ уходит в бесконечность во втором
квадранте (рис.86).
Например,
пусть Wр(p)
=
,
тогда АФЧХ САУ:
W(j
)
=
=
P(
)
+ jQ(
).
При 0 имеем P( ) - , Q( ) + j . Такая САУ не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива.
Структурно неустойчивую САУ можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие или форсирующие) или изменив структуру САУ, например, с помощью местных обратных связей.
8.4. Понятие запаса устойчивости
В
условиях эксплуатации параметры системы
по тем или иным причинам могут меняться
в определенных пределах (старение,
температурные колебания и т.п.). Эти
колебания параметров могут привести к
потере устойчивости системы, если она
работает вблизи границы устойчивости.
Поэтому стремятся спроектировать САУ
так, чтобы она работала вдали от границы
устойчивости.
Степень этого удаления называют
запасом
устойчивости.
Согласно критерия Найквиста, чем дальше АФЧХ от критической точки (-1, j0), тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе.
Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой САУ от критической точки в направлении вещественной оси и определяется расстоянием h от критической точки до точки пересечения годографом оси абсцисс (рис.87).
Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.
К
ак
уже отмечалось, с ростом коэффициента
передачи разомкнутой САУ растет модуль
каждой точки АФЧХ и при некотором
значении K
= Kкр
АФЧХ пройдет через критическую точку
(рис.88) и попадет на границу устойчивости,
а при K
> Kкр
замкнутая
САУ станет неустойчива. Однако в случае
“клювообразных” АФЧХ (получаются из-за
наличия внутренних обратных связей) не
только увеличение, но и уменьшение K
может привести к потере устойчивости
замкнутых САУ (рис. 89). В этом случае
запас устойчивости определяется двумя
отрезками h1
и h2,
заключенными между критической точкой
и АФЧХ.
Обычно при создании САУ задаются требуемыми запасами устойчивости h и , за пределы которых она выходить не должна. Эти пределы выставляются в виде сектора, вычерчиваемого вокруг критической точки, в который АФЧХ разомкнутой САУ входить не должна (рис.90).
