
- •Содержание
- •190202 – «Многоцелевые гусеничные и колесные машины»,
- •190205 – «Подъемно – транспортные, строительные дорожные машины и оборудования»
- •3. Рабочая программа.
- •3.1. Цели и задачи дисциплины
- •3.2. Требования к уровню освоения содержания дисциплины
- •3.3. Объём дисциплины и виды учебной работы
- •4. Содержание дисциплины.
- •4.1. Разделы дисциплины и виды занятий
- •4.2. Содержание разделов дисциплины (лекционный материал):
- •Тема 1 . Общие сведения о технических системах
- •Тема 2. Непрерывные сау
- •Тема 3. Устойчивость линейных сау
- •Тема 4. Качество процесса регулирования и методы синтеза линейных непрерывных сау
- •Тема 5. Нелинейные непрерывные стационарные сау
- •Тема 6. Микропроцессорное управление техническими системами
- •4.3. Тематика курсовых и контрольных работ
- •1. Анализ системы на идеальном усилителе*
- •2. Результаты анализа работы
- •5. Практические и лабораторные занятия
- •6. Учебно-методическое обеспечение дисциплины.
- •6. 1. Основная литература
- •6.2. Дополнительная литература
- •6.3. Средства обеспечения освоения дисциплины
- •6.4. Материально-техническое обеспечение дисциплины
- •7. Конспекты лекций
- •Развитие систем управления движением
- •Управление скоростью на тяговых режимах
- •Автоматизация управления сцеплением
- •Управление скоростью на тормозных режимах
- •Командные системы управления торможением
- •Развитие тормозных систем
- •Система автоматического регулирования зазоров в тормозных механизмах
- •Регулирование тормозных сил
- •Автоматизация тормозных систем
- •Антиблокировочные системы
- •Принцип работы и устройство антиблокировочных систем
- •Классификация антиблокировочных систем
- •Применение антиблокировочных систем на автомобиле
- •Управление направлением движения. Автоматизация рулевых устройств
- •Рулевое управление с электроприводом
- •Управление плавностью хода атс. Управляемые конструкции
- •Управление подвеской автомобилей
- •Автоматическое управление подвеской автомобилей
- •Привод рабочих органов механических объектов.
- •Привод с комбинированными энергетическими установками
- •Лекция 2. Фундаментальные принципы управления
- •Принцип разомкнутого управления
- •Принцип компенсации
- •Принцип обратной связи
- •2.1. Основные виды сау
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Лекция 3. Динамический режим сау. Уравнение динамики
- •3.1. Линеаризация уравнения динамики
- •3.2. Передаточная функция
- •3.3. Элементарные динамические звенья
- •Лекция 4. Эквивалентные преобразования структурных схем
- •С ар напряжения генератора постоянного тока
- •Лекция 5. Понятие временных характеристик
- •5.1. Переходные характеристики элементарных звеньев
- •Безынерционное (пропорциональное, усилительное) звено
- •Интегрирующее (астатическое) звено
- •Инерционное звено первого порядка (апериодическое)
- •Инерционные звенья второго порядка
- •Дифференцирующее звено
- •Лекция 6. Понятие частотных характеристик (чх)
- •Частотные характеристики типовых звеньев
- •Безынерционное звено
- •Интегрирующее звено
- •Апериодическое звено
- •Инерционные звенья второго порядка
- •Правила построения чх элементарных звеньев
- •6.3. Частотные характеристики разомкнутых одноконтурных сау
- •Лекция 7. Законы регулирования
- •Лекция 8. Понятие устойчивости системы
- •8.1. Алгебраические критерии устойчивости. Необходимое условие устойчивости
- •Критерий Рауса
- •Критерий Гурвица
- •8.2. Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерий устойчивости Найквиста
- •8.3. Понятие структурной устойчивости. Афчх астатических сау
- •8.4. Понятие запаса устойчивости
- •8.5. Анализ устойчивости по лчх
- •8.6. Теоретическое обоснование метода d-разбиений
- •Лекции 9. Прямые методы оценки качества управления
- •Оценка переходного процесса при ступенчатом воздействии.
- •Оценка качества управления при периодических возмущениях
- •Корневой метод оценки качества управления
- •Интегральные критерии качества
- •Теоретическое обоснование
- •Основные соотношения между вчх и переходной характеристикой
- •Метод трапеций
- •Лекция 10. Синтез сау
- •Включение корректирующих устройств
- •Синтез корректирующих устройств
- •Коррекция свойств сау изменением параметров звеньев
- •Изменение коэффициента передачи
- •Изменение постоянной времени звена сау
- •Лекция 11. Коррекция свойств сау включением последовательных корректирующих звеньев
- •Включение интегрирующего звена в статическую сау
- •Включение апериодического звена
- •Включение форсирующего звена
- •Включение звена со сложной передаточной функцией
- •Последовательная коррекция по задающему воздействию
- •Коррекция с использованием неединичной обратной связи
- •Компенсация возмущающего воздействия
- •8. Экзаменационные вопросы
- •9. Организация самастоятельной работы
8.2. Частотные критерии устойчивости
Это графоаналитические методы, позволяющие по виду частотных характеристик САУ судить об их устойчивости. Их общее достоинство в простой геометрической интерпретации, наглядности и в отсутствии ограничений на порядок дифференциального уравнения.
Принцип аргумента
Запишем характеристический полином САУ в виде
D(p) = a0 (p - p1) (p - p2) ... (p - pn) = 0.
Его корни
pi = i + j i = |pi|ejarg(pi),
где arg(pi) = arctg( i/ai) + k ,
.
Каждый корень можно изобразить вектором на комплексной плоскости (рис.80 а), тогда разность p - pi изобразится разностью векторов (рис.80 б), где p - любое число.
Еcли менять значение p произвольным образом, то конец вектора p - pi будет перемещаться по комплексно плоскости, а его начало будет оставаться неподвижным, так как pi - это конкретное неизменное значение.
В частном случае, если на вход системы подавать гармонические колебания с различной частотой , то p = j , а характеристический полином принимает вид:
D(j
)
= a0
(j
- p1)
(j
- p2)
...
(j
- pn).
При этом концы векторов j - pi будут находиться на мнимой оси (рис.80 в). Если менять от - до + , то каждый вектор j - pi будет поворачиваться относительно своего начала pi на угол +p для левых и - p для правых корней (рис.68г).
Характеристический полином можно представить в виде
D(j ) = |D(j )|ejarg(D(j )),
где |D(j )| = a0 |j - p1| |j - p2|...|j - pn|,
arg(D(j )) = arg(j - p1) + arg(j - p2) + .. + arg(j - pn).
Пусть из n корней m - правые, а n - m - левые, тогда угол поворота вектора D(j ) при изменении от - до + равен
=
(n
- m)
- m
,
или при изменении от 0 до + получаем
=
(n
- 2m)
(
/2).
Отсюда вытекает правило: изменение аргумента вектора b при изменении частоты от - до + равно разности между числом левых и правых корней уравнения D(p) = 0, умноженному на , а при изменении частоты от 0 до + эта разность умножается на /2.
Это и есть принцип аргумента. Он положен в основе всех частотных критериев устойчивости. Мы рассмотрим два наиболее распространенных критерия: критерий Михайлова и критерий Найквиста.
Критерий устойчивости Михайлова
Так как для устойчивой САУ число правых корней m = 0, то угол поворота вектора D(j ) составит
= n /2.
Т
о
есть САУ будет устойчива, если вектор
D(j
)
при изменении частоты
от
0 до +
повернется
на угол n
/2.
При этом конец вектора опишет кривую, называемую годографом Михайлова. Она начинается на положительной полуоси, так как D(0) = an, и последовательно проходит против часовой стрелки n квадрантов комплексной плоскости, уход в бесконечность в n - ом квадранте (рис.81 а).
Если это правило нарушается (например, число проходимых кривой квадрантов не равно n, или нарушается последовательность прохождения квадрантов (рис.81б)), то такая САУ неустойчива - это и есть необходимое и достаточное условие критерия Михайлова.
Достоинства. Этот критерий удобен своей наглядностью. Так, если кривая проходит вблизи начала координат, то САУ находится вблизи границы устойчивости и наоборот. Этим критерием удобно пользоваться, если известно уравнение замкнутой САУ.
Для облегчения построения годографа Михайлова выражение для D(j ) представляют суммой вещественной и мнимой составляющих:
D(j ) = a0(j - p1)(j - p2)...(j - pn) = a0(j )n + a1(j )n - 1 + ... + an = ReD(j ) + jImD(j ),
где
ReD(j ) = an - an - 2 2 + an- 4 4 - ...,
ImD(j ) = an - 1 - an - 3 3 + an- 5 5 - ....
Меняя от 0 до по этим формулам находят координаты точек годографа, которые соединяют плавной линией.