
- •Содержание
- •190202 – «Многоцелевые гусеничные и колесные машины»,
- •190205 – «Подъемно – транспортные, строительные дорожные машины и оборудования»
- •3. Рабочая программа.
- •3.1. Цели и задачи дисциплины
- •3.2. Требования к уровню освоения содержания дисциплины
- •3.3. Объём дисциплины и виды учебной работы
- •4. Содержание дисциплины.
- •4.1. Разделы дисциплины и виды занятий
- •4.2. Содержание разделов дисциплины (лекционный материал):
- •Тема 1 . Общие сведения о технических системах
- •Тема 2. Непрерывные сау
- •Тема 3. Устойчивость линейных сау
- •Тема 4. Качество процесса регулирования и методы синтеза линейных непрерывных сау
- •Тема 5. Нелинейные непрерывные стационарные сау
- •Тема 6. Микропроцессорное управление техническими системами
- •4.3. Тематика курсовых и контрольных работ
- •1. Анализ системы на идеальном усилителе*
- •2. Результаты анализа работы
- •5. Практические и лабораторные занятия
- •6. Учебно-методическое обеспечение дисциплины.
- •6. 1. Основная литература
- •6.2. Дополнительная литература
- •6.3. Средства обеспечения освоения дисциплины
- •6.4. Материально-техническое обеспечение дисциплины
- •7. Конспекты лекций
- •Развитие систем управления движением
- •Управление скоростью на тяговых режимах
- •Автоматизация управления сцеплением
- •Управление скоростью на тормозных режимах
- •Командные системы управления торможением
- •Развитие тормозных систем
- •Система автоматического регулирования зазоров в тормозных механизмах
- •Регулирование тормозных сил
- •Автоматизация тормозных систем
- •Антиблокировочные системы
- •Принцип работы и устройство антиблокировочных систем
- •Классификация антиблокировочных систем
- •Применение антиблокировочных систем на автомобиле
- •Управление направлением движения. Автоматизация рулевых устройств
- •Рулевое управление с электроприводом
- •Управление плавностью хода атс. Управляемые конструкции
- •Управление подвеской автомобилей
- •Автоматическое управление подвеской автомобилей
- •Привод рабочих органов механических объектов.
- •Привод с комбинированными энергетическими установками
- •Лекция 2. Фундаментальные принципы управления
- •Принцип разомкнутого управления
- •Принцип компенсации
- •Принцип обратной связи
- •2.1. Основные виды сау
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Лекция 3. Динамический режим сау. Уравнение динамики
- •3.1. Линеаризация уравнения динамики
- •3.2. Передаточная функция
- •3.3. Элементарные динамические звенья
- •Лекция 4. Эквивалентные преобразования структурных схем
- •С ар напряжения генератора постоянного тока
- •Лекция 5. Понятие временных характеристик
- •5.1. Переходные характеристики элементарных звеньев
- •Безынерционное (пропорциональное, усилительное) звено
- •Интегрирующее (астатическое) звено
- •Инерционное звено первого порядка (апериодическое)
- •Инерционные звенья второго порядка
- •Дифференцирующее звено
- •Лекция 6. Понятие частотных характеристик (чх)
- •Частотные характеристики типовых звеньев
- •Безынерционное звено
- •Интегрирующее звено
- •Апериодическое звено
- •Инерционные звенья второго порядка
- •Правила построения чх элементарных звеньев
- •6.3. Частотные характеристики разомкнутых одноконтурных сау
- •Лекция 7. Законы регулирования
- •Лекция 8. Понятие устойчивости системы
- •8.1. Алгебраические критерии устойчивости. Необходимое условие устойчивости
- •Критерий Рауса
- •Критерий Гурвица
- •8.2. Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерий устойчивости Найквиста
- •8.3. Понятие структурной устойчивости. Афчх астатических сау
- •8.4. Понятие запаса устойчивости
- •8.5. Анализ устойчивости по лчх
- •8.6. Теоретическое обоснование метода d-разбиений
- •Лекции 9. Прямые методы оценки качества управления
- •Оценка переходного процесса при ступенчатом воздействии.
- •Оценка качества управления при периодических возмущениях
- •Корневой метод оценки качества управления
- •Интегральные критерии качества
- •Теоретическое обоснование
- •Основные соотношения между вчх и переходной характеристикой
- •Метод трапеций
- •Лекция 10. Синтез сау
- •Включение корректирующих устройств
- •Синтез корректирующих устройств
- •Коррекция свойств сау изменением параметров звеньев
- •Изменение коэффициента передачи
- •Изменение постоянной времени звена сау
- •Лекция 11. Коррекция свойств сау включением последовательных корректирующих звеньев
- •Включение интегрирующего звена в статическую сау
- •Включение апериодического звена
- •Включение форсирующего звена
- •Включение звена со сложной передаточной функцией
- •Последовательная коррекция по задающему воздействию
- •Коррекция с использованием неединичной обратной связи
- •Компенсация возмущающего воздействия
- •8. Экзаменационные вопросы
- •9. Организация самастоятельной работы
Дифференцирующее звено
Различают
идеальное и реальное дифференцирующие
звенья. Уравнение динамики идеального
звена: y(t)
=
,
или y
= kpu.
Здесь выходная величина пропорциональна
скорости изменения входной величины.
Передаточная функция: W(p)
= kp.
При k
= 1
звено осуществляет чистое дифференцирование
W(p)
= p.
Переходная характеристика:
h(t)
= k
1’(t)
= d(t).
Идеальное дифференцирующее звено реализовать невозможно, так как величина всплеска выходной величины при подаче на вход единичного ступенчатого воздействия всегда ограничена. На практике используют реальные дифференцирующие звенья, осуществляющие приближенное дифференцирование входного сигнала.
Его уравнение: Tpy + y = kTpu.
Передаточная
функция: W(p)
=
.
При малых Т звено можно рассматривать как идеальное дифференцирующее. Переходную характеристики можно вывести с помощью формулы Хевисайда:
,
здесь p1 = - 1/T - корень характеристического уравнения D(p) = Tp + 1 = 0; кроме того, D’(p1) = T.
При подаче на вход единичного ступенчатого воздействия выходная величина оказывается ограничена по величине и растянута во времени (рис.60). По переходной характеристике, имеющей вид экспоненты, можно определить передаточный коэффициент k и постоянную времени Т. Примерами таких звеньев могут являться четырехполюсник из сопротивления и емкости или сопротивления и индуктивности, демпфер и т.п. Дифференцирующие звенья являются главным средством, применяемым для улучшения динамических свойств САУ.
Кроме
рассмотренных имеется еще ряд звеньев,
на которых подробно останавливаться
не будем. К ним можно отнести идеальное
форсирующее звено (W(p)
= Tp
+ 1,
практически не реализуемо), реальное
форсирующее звено (W(p)
=
,
при T1
>>
T2),
запаздывающее звено (W(p)
= e
-
pT),
воспроизводящее входное воздействие
с запаздыванием по времени и другие.
Лекция 6. Понятие частотных характеристик (чх)
Если подать на вход системы с передаточной функцией W(p) гармонический сигнал
то после завершения переходного процесса на выходе установится гармонические колебания
с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом.
Подставим выражения для u(t) и y(t) в уравнение динамики
(aоpn + a1pn - 1 + a2pn - 2 + ... + an)y = (bоpm + b1pm-1 + ... + bm)u.
Учтем,
что
а , значит, pnu = pnUmejwt = Um (jw)nejwt = (jw)nu.
Аналогичные соотношения можно записать и для левой части уравнения. Получим:
По аналогии с передаточной функцией можно записать:
W
(j
),
равная отношению выходного сигнала к
входному при изменении входного сигнала
по гармоническому закону, называется
частотной
передаточной функцией.
Легко заметить, что она может быть
получена путем простой замены p
на j
в выражении W(p).
W(j
)
есть комплексная функция, п
оэтому:
где
P(
)
- вещественная
Ч
Х
(ВЧХ); Q(
)
- мнимая ЧХ (МЧХ); А(
)
- амплитудная ЧХ
(АЧХ):
(
)
- фазовая
ЧХ (ФЧХ).
АЧХ дает отношение амплитуд выходного
и входного сигналов, ФЧХ - сдвиг по фазе
выходной величины относительно входной:
Если
W(j
)
изобразить вектором на комплексной
плоскости, то при изменении
от
0 до +
его
конец будет вычерчивать кривую, называемую
годографом
вектора
W(j
),
или амплитудно
- фазовую частотную характеристику
(АФЧХ)
(рис.61). Ветвь АФЧХ при изменении
от
-
до
0 можно получить зеркальным отображением
данной кривой относительно вещественной
оси.
В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.62): логарифмическая амплитудная ЧХ (ЛАЧХ) L( ) и логарифмическая фазовая ЧХ (ЛФЧХ) ( ). Они получаются путем логарифмирования передаточной функции:
ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L( ) = 20lgA( ). Величина L( ) откладывается по оси ординат в децибелах. Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как lg(P2/P1) = lg(A22/A12) = 20lg(A2/A1).
По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой. Так как lg(0) = - , то ось ординат проводят произвольно.
ЛФЧХ,
получаемая из второго слагаемого,
отличается от ФЧХ только масштабом по
оси
.
Величина
(
)
откладывается по оси ординат в градусах
или радианах. Для элементарных звеньев
она не выходит за пределы: -
+
.
Ч
Х
являются исчерпывающими характеристиками
системы. Зная ЧХ системы, можно восстановить
ее передаточную функцию и определить
параметры.