
- •1.Случайные события ,операции над событиями.
- •2.Вероятность случайного события и методы ее вычисления
- •3. Формулы комбинаторики Число сочетаний из n элементов по m
- •Перестановки из n элементов
- •Число размещений из n элементов по m
- •5. Относительная частота появления случайного события и ее вычисление
- •7.Теорема умножения вероятностей.
- •8. Формула полной вероятности
- •9.Формула Байеса
- •Задача 1
- •11. Основные числовые характеристики случайных величин их свойства
- •12. Математическое ожидание постоянной величины равно этой постоянной.
- •13. Дисперсия случайной величины
- •Формулировка[править | править исходный текст]
- •Доказательство
- •16. Закон равномерной плотности
- •17.Показательное распределение
- •18.Нормальное распределение
- •20. Числовые характеристики системы двух случайных величин
- •Корреляционный момент
- •2. Основные способы формирования выборочной совокупности
- •3. Определение необходимого объема выборки
- •4. Распространение результатов выборочного наблюдения на генеральную совокупность
- •4.1. Эмпирическая функция распределения.
- •4.2. Выборочная дифференциальная функция.
- •4.1. Точечная оценка параметров распределения
- •Линейная парная регрессия и метод наименьших квадратов
- •29.Система единичных векторов,свойства,базис,разложение по данному базису
- •32. Обратная матрица,ее свойства.Обращение матриц методом жордана-гаусса,условие обратимости матриц
- •Метод Гаусса—Жордана[править | править исходный текст]
- •С помощью матрицы алгебраических дополнений[править | править исходный текст]
- •Использование lu/lup-разложения[править | править исходный текст]
- •33.Элементарными преобразованиями матрицы
- •35. Векторная и матричная формы записи систем линейных уравнений Векторная форма записи
- •Матричная форма записи
- •36.Решение слау методом гаусса
- •Решение системы с помощью обратной матрицы
- •Определение[править | править исходный текст]
- •Свойства[править | править исходный текст] Инвариантность ранга при элементарных преобразованиях[править | править исходный текст]
- •Эквивалентность слау при элементарных преобразованиях[править | править исходный текст]
- •Нахождение обратных матриц[править | править исходный текст]
- •Приведение матриц к ступенчатому виду[править | править исходный текст]
- •39.Каноническая(предпочитаемая) форма записи слау
- •40.Симплексное преобразование слау
35. Векторная и матричная формы записи систем линейных уравнений Векторная форма записи
Система уравнений может быть записана в векторном виде:
A1x1 + A2x2 + ... + Anxn =B
Пример 1. Записать в векторном виде.
Матричная форма записи
В матричной записи система линейных уравнений может быть записана следующим образом:
AX=B
Пример 2: Записать в матричном виде систему из предыдущего примера
36.Решение слау методом гаусса
Метод Гаусса применим для решения системы линейных алгебраических уравнений c невырожденной матрицей системы. Идея метода Гаусса состоит в том, что систему n линейных алгебраических уравнений относительно nнеизвестных x1 , x2 , ..., xn
приводят последовательным исключением неизвестных к эквивалентной системе с треугольной матрицей
решение которой находят по рекуррентным формулам:
xn =dn , xi = di -S nk=i+1 cik xk , i=n-1, n-2, ...,1.
Матричная запись метода Гаусса.
Прямой ход метода Гаусса: приведение расширенной матрицы системы
к
ступенчатому виду
с
помощью элементарных
операций над строками матрицы
(под элементарными операциями понимаются
следующие операции:
перестановка строк;
умножение строки на число, отличное от нуля;
сложение строки матрицы с другой строкой, умноженной на отличное от нуля чиcло).