
- •1.Случайные события ,операции над событиями.
- •2.Вероятность случайного события и методы ее вычисления
- •3. Формулы комбинаторики Число сочетаний из n элементов по m
- •Перестановки из n элементов
- •Число размещений из n элементов по m
- •5. Относительная частота появления случайного события и ее вычисление
- •7.Теорема умножения вероятностей.
- •8. Формула полной вероятности
- •9.Формула Байеса
- •Задача 1
- •11. Основные числовые характеристики случайных величин их свойства
- •12. Математическое ожидание постоянной величины равно этой постоянной.
- •13. Дисперсия случайной величины
- •Формулировка[править | править исходный текст]
- •Доказательство
- •16. Закон равномерной плотности
- •17.Показательное распределение
- •18.Нормальное распределение
- •20. Числовые характеристики системы двух случайных величин
- •Корреляционный момент
- •2. Основные способы формирования выборочной совокупности
- •3. Определение необходимого объема выборки
- •4. Распространение результатов выборочного наблюдения на генеральную совокупность
- •4.1. Эмпирическая функция распределения.
- •4.2. Выборочная дифференциальная функция.
- •4.1. Точечная оценка параметров распределения
- •Линейная парная регрессия и метод наименьших квадратов
- •29.Система единичных векторов,свойства,базис,разложение по данному базису
- •32. Обратная матрица,ее свойства.Обращение матриц методом жордана-гаусса,условие обратимости матриц
- •Метод Гаусса—Жордана[править | править исходный текст]
- •С помощью матрицы алгебраических дополнений[править | править исходный текст]
- •Использование lu/lup-разложения[править | править исходный текст]
- •33.Элементарными преобразованиями матрицы
- •35. Векторная и матричная формы записи систем линейных уравнений Векторная форма записи
- •Матричная форма записи
- •36.Решение слау методом гаусса
- •Решение системы с помощью обратной матрицы
- •Определение[править | править исходный текст]
- •Свойства[править | править исходный текст] Инвариантность ранга при элементарных преобразованиях[править | править исходный текст]
- •Эквивалентность слау при элементарных преобразованиях[править | править исходный текст]
- •Нахождение обратных матриц[править | править исходный текст]
- •Приведение матриц к ступенчатому виду[править | править исходный текст]
- •39.Каноническая(предпочитаемая) форма записи слау
- •40.Симплексное преобразование слау
2. Основные способы формирования выборочной совокупности
Способ отбора - порядок отбора единиц из генеральной совокупности. Различают два вида:
1) повторный;
2) бесповторный.
Повторный отбор - отобранную единицу после обследования возвращают в генеральную совокупность, и она снова участвует в отборе. Численность генеральной совокупности при этом все время остается неизменной, а вероятность попадания каждой единицы в выборку постоянной.
Бесповторный отбор - отобранные однажды единицы в генеральную совокупность не возвращаются. Вероятность попадания отдельных единиц в выборку увеличивается по мере производства отбора.
В зависимости от методики формирования выборочной совокупности различают следующие виды выборки.
Простая случайная выборка - отбор, при котором единицы отбираются из генеральной совокупности наудачу. Этот выбор осуществляется двумя путями: жеребьевкой; с помощью таблиц случайных чисел.
Механическая выборка - вид отбора, при котором наблюдению подвергаются единицы, равно отстоящие друг от друга (отбирается каждая пятая единица, каждая десятая). Если единицы генеральной совокупности располагаются в случайном порядке, не зависящем от изучаемого признака, механическая выборка называется несистематической. Если единицы генеральной совокупности расположены в порядке увеличения или уменьшения изучаемого признака, механическая выборка называется систематической.
При механической выборке учитывается шаг отсчета и начало отсчета. Шаг отсчета - расстояние между соседними отбираемыми единицами. Он определяется делением численности генеральной совокупности на объем выборки h = N /n. Начало отсчета - номер единицы, которая должна быть отобрана первой.
Типическая выборка применятся для совокупности, не являющейся однородной по изучаемому признаку. При этом генеральную совокупность разбивают на однородные группы (типы) по изучаемому признаку. Затем из каждой группы отбирается определенное число единиц.
При пропорциональной выборке из каждой группы отбирают число единиц, пропорциональное удельному весу данной группы в генеральной совокупности. Стандартная ошибка непропорциональной выборки зависит от величины средней из групповых дисперсий .
Серийная выборка - из генеральной совокупности отбираются не единицы, подлежащие обследованию, а группы (серии, гнезда) единиц. Стандартные ошибки выборки при серийном отборе зависят от величины межсерийной дисперсии, которая определяется по формуле:
где ~ - межсерийная дисперсия выборочной совокупности;
r - число отобранных серий. Предельная ошибка серийной выборки:
Комбинированная выборка - комплексное использование нескольких видов выборки. Величина стандартной ошибки состоит из ошибок на каждой ее ступени и может быть определена как корень квадратный из суммы квадратов ошибок соответствующих выборок. Так, если при комбинированной выборке в сочетании использовались механическая и типическая выборки, то стандартную ошибку можно определить по формуле:
Где
1 и
2 -
стандартные ошибки соответственно
механической и типической выборок.