
- •1 Билет
- •1.Тиристоры, основные физические процессы
- •3.Арифметико-логическое устройство.
- •2 Билет
- •1.Полупроводниковые диоды.
- •2.Биполярный транзистор, принцип действия, характеристика
- •3.Тиристоры.
- •3 Билет
- •2.Импульсный режим работы и цифровое представление преобразуемой информации.
- •3.Управляемый однофазный мостовой выпрямитель.
- •4 Билет
- •2.Инвертирующий усилитель. Вывод формулы коэффициента усиления.
- •3.Регистры.
- •5 Билет
- •1. Влияние отрицательной обратной связи на характеристики усилителя
- •2. Внешние цепи операционного усилителя
- •3.Цифровые запоминающие устройства
- •6 Билет
- •1. Классы усиления усилителей?
- •2. Структурная и принципиальная схема двухкаскадного оу?
- •3. Эмиттерный повторитель ?
- •7 Билет
- •1. Оптоэлектронные приборы их характеристики и параметры.
- •2. Цифровые ключи на биполярных транзисторах.
- •3. Аналого-цифровые преобразователи
- •8 Билет
- •Индуктивный сглаживающий фильтр
- •Емкостной сглаживающий фильтр
- •Lc фильтр
- •Срок хранения данных
- •Иерархическая структура
- •Скорость чтения и записи[
- •9 Билет
- •1.Оптроны
- •2.Повторитель напряжения на основе операционного усилителя
- •3.Дешифраторы, шифраторы, преобразователи кодов
- •10 Билет
- •Оптроны
- •Переключательные полупроводниковые приборы
- •Динистор
- •2.Генераторы гармонических колебаний
- •11 Билет
- •5.2. Способы построения упт
- •12 Билет
- •1.Дифференциатор на оу.
- •3.Триггеры, классификация и принцип действия
- •1.Активные фильтры. Классификация. Основные параметры активных фильтров.
- •2.Цифровые ключи на биполярных транзисторах.
- •3.Сумматоры.
- •1.Схема диодно-транзисторной логики
- •2.Разновидности обратных связей и анализ их влияния.
- •3.Цифроаналоговые преобразователи.
- •1.Виды обратных связей в усилителях.
- •2.Операционный усилитель. Общие сведения. Основные параметры оу.
- •3.Постоянные запоминающие устройства
- •1. Оптоэлектронные приборы их характеристики и параметры.
- •1.Схемы включения биполярных транзисторов.
- •2.Инверторы, умножители напряжения и управляемые выпрямители.
- •3.Управляемый трехфазный мостовой выпрямитель.
- •3.Преобразователи постоянного напряжения.
- •1.Схема усилителя с термокомпенсацией.
- •2. Интегратор на оу
- •3.Оперативные запоминающие устройства.
- •2.Схема диодно-транзисторной логики
- •3.Цифровые ключи на биполярных транзисторах
- •1.Схема транзисторно-транзисторной логики с простым инвертором.
- •2.Сглаживающие фильтры.
- •3.Комбинационные цифровые устройства.
- •1.Триггер Шмитта.
- •2.Логарифмирующий усилитель.
- •3.Цифровые компараторы.
2.Схема диодно-транзисторной логики
Диодно-транзисторная логика (ДТЛ), — технология построения цифровых схем на основе биполярных транзисторов,диодов и резисторов.
Принцип работы
Если хотя бы на одном из входов уровень логического нуля, то ток течет через R1 и диод во входную цепь. На анодах диодов напряжение 0,7 В, которого недостаточно для открывания транзистора. Транзистор закрыт. На выходе формируется уровень логической единицы.
Если на все входы поступает уровень логической единицы, ток течет через R1 на базу транзистора, образуя на анодах диодов напряжение 1,4 В. Поскольку напряжение уровня логической единицы больше этой величины, входы диодов обратносмещены и не участвуют в работе схемы. Транзистор открыт в режиме насыщения. В транзистор втекает ток нагрузки, по величине значительно больший тока нагрузки в состоянии логической единицы.
3.Цифровые ключи на биполярных транзисторах
Режим отсечки
Когда напряжение база-эмиттер ниже, чем 0.6V - 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.
Активный режим
В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.
Режим насыщения
Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.
В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Инверсный режим
В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.
Чаще всего используются ключи, собранные по схеме с общим эмиттером, как показано на рис.3. В ключевом режиме биполярный транзистор работает в режиме насыщения (замкнутый ключ) или режиме отсечки (разомкнутый ключ). Полезно помнить, что в режиме насыщения оба перехода (коллектор-база и эмиттер-база) открыты, а в режиме отсечки - заперты. В режиме насыщения выходную цепь транзистора можно представить эквивалентным источником напряжения, величина ЭДС которого приводится в справочниках ( КЭНАС, U - напряжение насыщения).
Переходные процессы в электронном ключе на биполярном транзисторе характеризуются длительностью цикла переключения, который можно разделить на несколько отдельных этапов:
задержка включения;
включение (нарастание тока до величины, соответствующей насыщению);
задержка выключения (обусловлена рассасыванием заряда в базе при переходе из режима насыщения в активный режим);
выключение (обусловлено уменьшением тока коллектора до значения, соответствующего отсечке).
Билет 25