
- •1 Билет
- •1.Тиристоры, основные физические процессы
- •3.Арифметико-логическое устройство.
- •2 Билет
- •1.Полупроводниковые диоды.
- •2.Биполярный транзистор, принцип действия, характеристика
- •3.Тиристоры.
- •3 Билет
- •2.Импульсный режим работы и цифровое представление преобразуемой информации.
- •3.Управляемый однофазный мостовой выпрямитель.
- •4 Билет
- •2.Инвертирующий усилитель. Вывод формулы коэффициента усиления.
- •3.Регистры.
- •5 Билет
- •1. Влияние отрицательной обратной связи на характеристики усилителя
- •2. Внешние цепи операционного усилителя
- •3.Цифровые запоминающие устройства
- •6 Билет
- •1. Классы усиления усилителей?
- •2. Структурная и принципиальная схема двухкаскадного оу?
- •3. Эмиттерный повторитель ?
- •7 Билет
- •1. Оптоэлектронные приборы их характеристики и параметры.
- •2. Цифровые ключи на биполярных транзисторах.
- •3. Аналого-цифровые преобразователи
- •8 Билет
- •Индуктивный сглаживающий фильтр
- •Емкостной сглаживающий фильтр
- •Lc фильтр
- •Срок хранения данных
- •Иерархическая структура
- •Скорость чтения и записи[
- •9 Билет
- •1.Оптроны
- •2.Повторитель напряжения на основе операционного усилителя
- •3.Дешифраторы, шифраторы, преобразователи кодов
- •10 Билет
- •Оптроны
- •Переключательные полупроводниковые приборы
- •Динистор
- •2.Генераторы гармонических колебаний
- •11 Билет
- •5.2. Способы построения упт
- •12 Билет
- •1.Дифференциатор на оу.
- •3.Триггеры, классификация и принцип действия
- •1.Активные фильтры. Классификация. Основные параметры активных фильтров.
- •2.Цифровые ключи на биполярных транзисторах.
- •3.Сумматоры.
- •1.Схема диодно-транзисторной логики
- •2.Разновидности обратных связей и анализ их влияния.
- •3.Цифроаналоговые преобразователи.
- •1.Виды обратных связей в усилителях.
- •2.Операционный усилитель. Общие сведения. Основные параметры оу.
- •3.Постоянные запоминающие устройства
- •1. Оптоэлектронные приборы их характеристики и параметры.
- •1.Схемы включения биполярных транзисторов.
- •2.Инверторы, умножители напряжения и управляемые выпрямители.
- •3.Управляемый трехфазный мостовой выпрямитель.
- •3.Преобразователи постоянного напряжения.
- •1.Схема усилителя с термокомпенсацией.
- •2. Интегратор на оу
- •3.Оперативные запоминающие устройства.
- •2.Схема диодно-транзисторной логики
- •3.Цифровые ключи на биполярных транзисторах
- •1.Схема транзисторно-транзисторной логики с простым инвертором.
- •2.Сглаживающие фильтры.
- •3.Комбинационные цифровые устройства.
- •1.Триггер Шмитта.
- •2.Логарифмирующий усилитель.
- •3.Цифровые компараторы.
2.Генераторы гармонических колебаний
Генераторы гармонических колебаний представляют собой устройства из частотно-избирательной цепи и активного элемента. По типу частотно-избирательной цепи они делятся на LC- и RC-генераторы.
Генераторы LC-типа имеют сравнительно высокую стабильность частоты колебаний, устойчиво работают при значительных изменениях параметров транзисторов, обеспечивают получение колебаний, имеющих малый коэффициент гармоник. В генераторах LC-типа форма выходного напряжения весьма близка к гармонической. Это обусловлено достаточно хорошими фильтрующими свойствами колебательного контура. К недостаткам LC-генераторов относятся трудности изготовления высоко-стабильных температурно-независимых катушек индуктивности, а также высокая стоимость и громоздкость последних. Это особенно проявляется при создании низкочастотных автогенераторов, в которых даже при применении ферромагнитных сердечников габаритные размеры, масса и стоимость получаются значительными.
Перейдем к рассмотрению RC-генераторов. Генераторы такого типа достаточно просты в реализации, дешевы, имеют малые габариты и массу. Однако стабильность частоты колебаний в них значительно ниже, чем в LC-генераторах. Форма колебаний несколько отличается от синусоидальной и существенно изменяется в зависимости от значений параметров активного элемента и цепи обратной связи. Эти недостатки не позволяют применять их в схемах, где необходимо получать высокую точность и стабильность частоты колебаний, а также удовлетворительную форму выходного напряжения. В устройствах, где к этим параметрам не предъявляются жесткие требования, низкочастотные RC-генераторы используются достаточно широко.
В RC-генераторах обратная связь осуществляется за счет RC-цепей, обладающих избирательными свойствами и обеспечивающих на одной определенной частоте выполнение условий возбуждения колебаний. В этих генераторах выходное напряжение практически повторяет форму коллекторного тока транзистора. Поэтому они не могут работать с отсечкой тока и имеют сравнительно низкий КПД.
Схема цепочечного RC- генератора
3.
11 Билет
Зависимость параметров транзистора от температуры.
Влияние температуры на работу биполярного транзистора
Влияние
температуры на работу биполярного
транзистора обусловлено тремя физическими
факторами: уменьшением потенциальных
барьеров в переходах, увеличением
тепловых токов переходов и увеличением
коэффициентов передачи токов с ростом
температуры. Уменьшение потенциального
барьера К с
ростом температуры также, как и в
изолированном переходе, (см. раздел 2)
приводит к усилению инжекции, в результате
чего увеличивается входной ток
транзистора. На рис. 3.24 приведены входные
характеристики транзистора в схеме с
общей базой, полученные при различных
температурах (заметим, что входные
характеристики в схеме ОЭ при различных
температурах выглядят аналогично и
отличаются лишь масштабом по оси токов
так как iК >>iБ.
Как видно из рисунка 3.24, увеличение
входного тока с ростом температуры
эквивалентно смещению характеристики
в сторону меньших входных напряжений.
Это смещение описывается температурным
коэффициентом напряжения
,
который составляет для кремниевых
транзисторов = - 3 мВ/град. В
расчетах транзисторных схем часто
используют кусочно-линейную аппроксимацию
входных характеристик. На рис. 3.24,б
приведены идеализированные
аппроксимированные характеристики без
учета влияния сопротивления тела
базы rБ.
Как видно из рисунка при rБ =0
характеристики проходят вертикально
и напряжение на переходе равно
пороговому - uЭБ = U*.
Изменение этого напряжения с температурой
также описывается коэффициентом .
Увеличение тепловых токов переходов с ростом температуры, подробно рассмотренное в разделе 2, описывается приводимыми в справочниках температурными зависимостями токов IКБ0, IЭБ0. Типовые зависимости токов IКБ0 и IЭБ0 от температуры для кремниевого маломощного транзистора приведены на рис. 3.25.
|
|
Использование логарифмического масштаба по оси ординат позволило представить экспоненциальную зависимость токов от температуры в линейном виде. Как видно из рисунка, в рабочем интервале температур транзистора (-60 ...+ 80 C) токи IКБ0 и IЭБ0 могут изменяться на 1...2 порядка. Следует заметить, что отмеченный рост тепловых токов заметно сказывается на выходных характеристиках лишь германиевых транзисторов, что связано с относительно большой величиной самих тепловых токов. В кремниевых транзисторах тепловые токи очень малы, поэтому их изменение с температурой не оказывает заметного влияния на характеристики. Увеличение коэффициента передачи тока эмиттера и тока базы с ростом температуры обусловлено ростом времени жизни электронов в базе (см. раздел 1) и соответствующим ослаблением их рекомбинации с дырками. На рис. 3.26 приведены типичные температурные зависимости коэффициентов и , нормированных к значениям, полученным при комнатной температуре ( t =20 C). Из рисунка видно, что если изменение с температурой выражено очень слабо (в рабочем интервале температур оно не превышает нескольких процентов), то изменение может достигать нескольких сотен процентов.
Сказанное выше иллюстрируют приведенные на рис. 3.27 выходные характеристики транзистора в схемах ОБ и ОЭ, полученные при различных температурах. Как видно из рисунка, увеличение температуры приводит к смещению (дрейфу) характеристик в сторону более высоких токов коллектора. При этом в схеме ОБ при фиксированном токе эмиттера iК= iЭ температурный дрейф характеристик выражен довольно слабо, что объясняется слабой температурной зависимостью коэффициента передачи тока эмиттера - см. рис 3.26. У характеристик для схемы ОЭ, снимаемых при iБ =const, в связи с сильной температурной зависимостью коэффициента передачи тока базы температурный дрейф очень велик - изменение тока коллектора iК= iБ может достигать несколько десятков и даже сотен процентов. Температурная нестабильность характеристик транзистора в схеме ОЭ требует специальных мер по стабилизации рабочей точки. На рис. 3.27 приведены три типовые схемы задания режима работы транзистора по постоянному току. В схеме, приведенной на рис 3.27,а внешние элементы задают ток базы
.
Отсюда можно записать выражение для расчета коллекторного тока:
.
(3.39)
Оценим изменение тока IК при изменении температуры на 20 С. Будем полагать EК=10 В, RБ=100 кОм, (20 С)=100, U*(20 С)=0.7В и IКЭ0(20 С)=5мкА, откуда IК(20 С )=100 · 10/10 5-100· 0.7/10 5+5 · 10 -6= =9.305 мА. Будем также считать, что изменение при изменении температуры на 20 С составляет 50%, изменение U* определяется коэффициентом = -2 мВ/град , изменение IКЭ0 определяется температурой его удвоения T* = 5 С. Тогда несложно определить значения , U* и IКЭ0 при t =40 С: (40 С) =1,5 ·100=150, U*(40 С)=0,7-20 ·2 ·10 -3=0,66 В и IКЭ0( 40 С)=2 4 ·5 ·10 -6=160 мкА. Тогда ток IК ( 40 С)=150·10/10 5-150 ·0,66/10 5+160·10 -6=14,17 мА, то есть ток IК изменился на 52,3 % и основной вклад в это изменение внес коэффициент передачи тока базы . Расчет показывает, что эта схема обладает низкой температурной стабильностью. В схеме, приведенной на рис. 3.28,б, внешние элементы задают ток эмиттера
и
.
Таким образом, в этой схеме обеспечивается высокая температурная стабильность (как в схеме ОБ), правда достигается она за счет использования дополнительного источника питания. Следует заметить, что указанная схема представляет собой по переменному току - схему ОЭ, а по постоянному току - схему ОБ. Третья схема (см. рис. 3.28,в) занимает промежуточное по термостабильности положение между двумя первыми схемами. В этой схеме фиксируется напряжение uБЭ и при рациональном выборе RБ1,RБ2 и RЭ температурная стабильность всего в 2 - 3 раза хуже, чем во второй схеме.
2Усилители постоянного тока.
Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рисунке 5.1 приведена АЧХ УПТ.
Рисунок 5.1. АЧХ УПТ
Для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь между каскадами. Однако такая связь приводит к необходимости решения специфических задач:
◆ согласование потенциальных уровней в соседних каскадах;
◆ уменьшения дрейфа (нестабильности) выходного уровня напряжения или тока.