
- •1 Билет
- •1.Тиристоры, основные физические процессы
- •3.Арифметико-логическое устройство.
- •2 Билет
- •1.Полупроводниковые диоды.
- •2.Биполярный транзистор, принцип действия, характеристика
- •3.Тиристоры.
- •3 Билет
- •2.Импульсный режим работы и цифровое представление преобразуемой информации.
- •3.Управляемый однофазный мостовой выпрямитель.
- •4 Билет
- •2.Инвертирующий усилитель. Вывод формулы коэффициента усиления.
- •3.Регистры.
- •5 Билет
- •1. Влияние отрицательной обратной связи на характеристики усилителя
- •2. Внешние цепи операционного усилителя
- •3.Цифровые запоминающие устройства
- •6 Билет
- •1. Классы усиления усилителей?
- •2. Структурная и принципиальная схема двухкаскадного оу?
- •3. Эмиттерный повторитель ?
- •7 Билет
- •1. Оптоэлектронные приборы их характеристики и параметры.
- •2. Цифровые ключи на биполярных транзисторах.
- •3. Аналого-цифровые преобразователи
- •8 Билет
- •Индуктивный сглаживающий фильтр
- •Емкостной сглаживающий фильтр
- •Lc фильтр
- •Срок хранения данных
- •Иерархическая структура
- •Скорость чтения и записи[
- •9 Билет
- •1.Оптроны
- •2.Повторитель напряжения на основе операционного усилителя
- •3.Дешифраторы, шифраторы, преобразователи кодов
- •10 Билет
- •Оптроны
- •Переключательные полупроводниковые приборы
- •Динистор
- •2.Генераторы гармонических колебаний
- •11 Билет
- •5.2. Способы построения упт
- •12 Билет
- •1.Дифференциатор на оу.
- •3.Триггеры, классификация и принцип действия
- •1.Активные фильтры. Классификация. Основные параметры активных фильтров.
- •2.Цифровые ключи на биполярных транзисторах.
- •3.Сумматоры.
- •1.Схема диодно-транзисторной логики
- •2.Разновидности обратных связей и анализ их влияния.
- •3.Цифроаналоговые преобразователи.
- •1.Виды обратных связей в усилителях.
- •2.Операционный усилитель. Общие сведения. Основные параметры оу.
- •3.Постоянные запоминающие устройства
- •1. Оптоэлектронные приборы их характеристики и параметры.
- •1.Схемы включения биполярных транзисторов.
- •2.Инверторы, умножители напряжения и управляемые выпрямители.
- •3.Управляемый трехфазный мостовой выпрямитель.
- •3.Преобразователи постоянного напряжения.
- •1.Схема усилителя с термокомпенсацией.
- •2. Интегратор на оу
- •3.Оперативные запоминающие устройства.
- •2.Схема диодно-транзисторной логики
- •3.Цифровые ключи на биполярных транзисторах
- •1.Схема транзисторно-транзисторной логики с простым инвертором.
- •2.Сглаживающие фильтры.
- •3.Комбинационные цифровые устройства.
- •1.Триггер Шмитта.
- •2.Логарифмирующий усилитель.
- •3.Цифровые компараторы.
Срок хранения данных
Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10—20 лет,[источник не указан 194 дня] хотя гарантия на носители дается не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.
Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.
У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.
По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3-6 месяцев.
Иерархическая структура
Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно, это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.
Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.
Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы-десятки байт.
Скорость чтения и записи[
Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи — десятки-сотни микросекунд.
Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения десятки микросекунд.
9 Билет
1.Оптроны
Элементарный оптрон – пара с фотонной связью
Оптрон – это активный элемент, сочетающий источник света и согласованный с ним фотоприемник, в котором внешний электрический сигнал преобразуется в оптический, усиливается, затем снова преобразуется в электрический, либо наоборот, но обязательно коэффициент усиления должен быть больше единицы.
Основное достоинство – возможность разделения входной и выходной цепей, т.е. имеет место гальваническая или оптическая развязка.
Оптроны подразделяются на два вида:
а) оптрон с внешней фотонной связью и внутренней электрической;
б) оптрон с внутренней фотонной связью и с внешней электрической. Оптроны используются для преобразования, усиления, генерирования, формирования электрического сигнала и т.д.
В основном в качестве источника света в оптронах используется светодиод инжекционный. Спектр излучения зависит от материала изготовления и различается типом фотоприемника.