
- •Цифровой фотоаппарат
- •Описание
- •Типы цифровых фотоаппаратов
- •Фотоаппараты с несменными объективами
- •Фотоаппараты со сменными объективами
- •Характеристики цифровых фотоаппаратов из сферы рекламы и маркетинга
- •Устройство цифрового фотоаппарата
- •Общее описание
- •Основные элементы цифрового фотоаппарата
- •Матрица
- •Типы матриц по применяемой технологии
- •Кмоп-матрица
- •Объектив
- •Видоискатель
- •Процессор
- •Носители информации
- •Сравнение цифровых фотоаппаратов Canon eos 20d и Canon ixus 500 hs
Устройство цифрового фотоаппарата
Общее описание
История развития фототехники привела к тому, что были выработаны определённые стандарты на интерфейс между фотографом и используемой им фототехникой. В результате цифровые фотоаппараты (цифровая фотокамера, ЦФК) в большинстве своих внешних черт и органах управления повторяют модели плёночной фототехники. Принципиальное различие оказывается в «начинке» аппарата, в технологиях фиксации и последующей обработки изображения.
Основные элементы цифрового фотоаппарата
Матрица
Общее описание
Матрица или светочувствительная матрица — специализированная аналоговая или цифро-аналоговая интегральная микросхема, состоящая из светочувствительных элементов — фотодиодов.
Предназначена для преобразования проецированного на неё оптического изображения в аналоговый электрический сигнал или в поток цифровых данных (при наличии АЦП непосредственно в составе матрицы).
Является основным элементом цифровых фотоаппаратов, современных видео- и телевизионных камер, фотокамер, встроенных в мобильный телефон, камер систем видеонаблюдения и многих других устройств.
Применяется в оптических детекторах перемещения компьютерных мышей, сканерах штрих-кодов, планшетных и проекционных сканерах, системах астро- и солнечной навигации.
Устройство одного пикселя матрицы
Архитектура пикселей у производителей разная. Для примера здесь приводится архитектура ПЗС-пикселя.
Рисунок 1 Архитектура ПЗС-пикселя
Обозначения на схеме субпикселя ПЗС-матрицы — матрицы с карманом n-типа:
1 — фотоны света, прошедшие через объектив фотоаппарата;
2 — микролинза субпикселя;
3 — R — красный светофильтр субпикселя, фрагмент фильтра Байера;
4 — прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова;
5 — оксид кремния;
6 — кремниевый канал n-типа: зона генерации носителей — зона внутреннего фотоэффекта;
7 — зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда;
8 — кремниевая подложка p-типа.
Микролинза субпикселя
Буферные регистры сдвига на ПЗС-матрице, равно как и обрамление КМОП-пиксела на КМОП-матрице «съедают» значительную часть площади матрицы, в результате, каждому пикселю достаётся лишь 30 % светочувствительной области от его общей поверхности. У матрицы с полнокадровым переносом эта область составляет 70 %. Именно поэтому в большинстве современных ПЗС матриц над пикселем устанавливается микролинза. Такое простейшее оптическое устройство покрывает бо́льшую часть площади ПЗС-элемента и собирает всю падающую на эту часть долю фотонов в концентрированный световой поток, который, в свою очередь, направлен на довольно компактную светочувствительную область пиксела.
Характеристики матриц
Светочувствительность (более коротко чувствительность), отношение сигнал-шум и физический размер пикселя однозначно взаимосвязаны (для матриц, созданных по одной и той же технологии). Чем больше физический размер пикселя, тем больше получаемое соотношение сигнал-шум при заданной чувствительности, или тем выше чувствительность при заданном соотношении сигнал-шум. Физический размер матрицы и её разрешение однозначно определяют размер пикселя. Размер пикселя напрямую определяет такую важную характеристику, как фотографическая широта.
Отношение сигнал/шум
Всякая физическая величина совершает некоторые колебания от своего среднего состояния, в науке это называется флуктуациями. Поэтому и каждое свойство всякого тела тоже изменяется, колеблясь в некоторых пределах. Это справедливо и для такого свойства, как светочувствительность фотоприемника, независимо от того, что собой представляет этот фотоприемник. Следствием этого является то, что некоторая величина не может иметь какого-то конкретного значения, а изменяется в зависимости от обстоятельств. Если, например, рассмотреть такой параметр фотоприемника, как «уровень чёрного», то есть то значение сигнала, которое будет показывать фотодатчик при отсутствии света, то и этот параметр будет некоторым образом флуктуировать, в том числе эта величина будет меняться от одного фотодатчика к другому, если они образуют некоторый массив (матрицу).
В качестве примера можно рассмотреть обычную фотопленку, где фотодатчики — зерна бромистого серебра, и их размер и «качество» неконтролируемо меняются от точки к точке (изготовитель фотоматериала может обеспечить только среднее значение параметра и величину его отклонения от среднего значения, но не сами конкретные значения этой величины в конкретных позициях). В силу этого обстоятельства пленка, проявленная без экспозиции, покажет некоторое, очень маленькое, но отличное от нуля почернение, которое называется «вуаль». И у фотоматрицы цифрового фотоаппарата наблюдается то же самое явление. В науке такое явление называется шумом, так как оно мешает правильному восприятию и отображению информации, и для того, чтобы изображение хорошо передавало структуру исходного сигнала, необходимо, чтобы уровень сигнала в некоторой степени превосходил уровень шумов, характерных для данного устройства. Это называется отношением сигнал/шум.
Чувствительность
К матрицам применяется термин эквивалентный «чувствительности», потому что:
в зависимости от назначения матрицы формальное значение чувствительности может определяться различными способами по различным критериям;
аналоговым усилением сигнала и цифровой постобработкой можно менять значение чувствительности матрицы в широком диапазоне.
У цифровых фотоаппаратов значение эквивалентной чувствительности может меняться в диапазоне ISO 50—12800. Максимальная используемая в массовых фотоаппаратах чувствительность соответствует отношению сигнал/шум 2-5.
Разрешение
Фотоматрица оцифровывает (разделяет на кусочки — «пиксели») то изображение, которое формируется объективом фотоаппарата. Но, если объектив в силу недостаточно высокой разрешающей способности передаёт ДВЕ светящиеся точки объекта, разделённые третьей чёрной, как одну светящуюся точку на ТРИ подряд расположенных пиксела, то говорить о точном разрешении изображения фотоаппаратом не приходится.
В фотографической оптике существует приблизительное соотношение: если разрешающую способность фотоприемника выразить в линиях на миллиметр (или же в пикселях на дюйм), обозначим её как M, и так же выразить разрешающую способность объектива (в его фокальной плоскости), обозначим её как N, то результирующее разрешение системы объектив+фотоприемник, обозначим его как K, можно найти по формуле 1/K = 1/N +1/M или K= (NM)/(N+M).
Это соотношение максимально при N=M, когда разрешение равно N/2 , поэтому желательно, чтобы разрешающая способность объектива соответствовала разрешающей способности фотоприемника.
У современных цифровых фотоматриц разрешающая способность определяется размером пикселя, который варьируется у разных фотоматриц в пределах от 0,0025 мм до 0,0080 мм, а у большинства современных фотоматриц он равен 0,006 мм. Поскольку две точки будут различаться если между ними находится третья (незасвеченная) точка, то разрешающая способность соответствует расстоянию в два пикселя, то есть M=1/(2*p), где p – размер пикселя.
У цифровых фотоматриц разрешающая способность составляет от 200 линий на миллиметр (у крупноформатных цифровых фотокамер) до 70 линий на миллиметр(у web-камер и мобильных телефонов).
Физический размер матрицы
Физические размеры фотосенсоров определяются размером отдельных пикселей матрицы, которые в современных фотосенсорах имеют величину 0,005-0,006 мм. Чем крупнее пиксель, тем больше его площадь и количество собираемого им света, поэтому тем выше его светочувствительность и лучше отношение сигнал/шум (в плёночной фотографии шумы называются «зернистостью» или «гранулярностью»). Необходимое разрешение деталей фотографии определяет общее количество пикселей, которое в современных фотоматрицах достигает десятков миллионов пикселей (Мегапикселей), и тем задаёт физические размеры фотоматрицы.
Законы оптики определяют зависимость ГРИП от физического размера матрицы. Если сфотографировать тремя фотоаппаратами с разным физическим размером матрицы одну и ту же сцену с одним и тем же углом зрения и одним и тем же значением диафрагмы на объективах, и изучить результат (файл на компьютере, распечатку с принтера) в одинаковых условиях, то ГРИП на снимке, сделанном фотоаппаратом с наименьшей матрицей, будет наибольшей (больше предметов в кадре будет показано резко), а фотоаппарат с наибольшей матрицей покажет наименьшую ГРИП (предметы не в зоне резкости будут сильнее размыты).
Размеры фотосенсоров чаще всего обозначают как «тип» в виде дробных частей дюйма (например, 1/1.8" или 2/3"), что фактически больше реального физического размера диагонали сенсора. Эти обозначения происходят от стандартных обозначений размеров трубок телекамер в 1950-х годах. Они выражают не размер диагонали самой матрицы, а внешний размер колбы передающей трубки. Инженеры быстро установили, что по различным причинам диагональ полезной площади изображения составляет около двух третей диаметра трубки. Это определение стало устоявшимся (хотя и должно было быть давно отброшено). Не существует чёткой математической взаимосвязи между «типом» сенсора, выраженном в дюймах, и его фактической диагональю. Однако, в грубом приближении, можно считать, что диагональ составляет две трети типоразмера.
Отношение сторон кадра
Формат кадра 4:3 в основном применяется в любительских цифровых фотоаппаратах. Некоторые фирмы, например, Canon, допускают в этих фотоаппаратах настройку соотношения сторон в диапазонах 4:3 и 16:9.
Формат кадра 3:2 применяется в зеркальных цифровых фотоаппаратах, кроме выполненных по стандарту 4:3.
Выпускается незначительное число моделей с кадром 16:9.
В цифровых зеркальных фотоаппаратах Olympus используется матрица с соотношением сторон 4:3 (стандарт 4:3).
Пропорции пикселя
Выпускаются матрицы с тремя различными пропорциями пикселя:
Для видеоаппаратуры выпускаются сенсоры с пропорцией пикселя 4:3 (PAL)
или 3:4 (NTSC);
Фотографическое, рентгенографическое и астрономическое оборудование, а также развивающееся сейчас HDTV видеооборудование обычно имеет квадратный пиксель.