
- •Экологическая физиология
- •Глава 1. Проблемы экологии 6
- •Глава 2. Природные экологические адаптации 27
- •Глава 3 Антропогенные воздействия на окружающую среду 90
- •Глава 4 Техногенные факторы в изменении окружающей среды 133
- •Глава 5 Общие патогенетические механизмы токсикоза 194
- •Глава 6 Антиоксидантная система организма 257
- •Глава 7 Экология и адаптация 294
- •Глава 8 Организация экологичесчкого мониторинга и методы иследования 389
- •Глава 9 Экологический стресс 434
- •Глава 10 Принципы детоксикации организма 463
- •Глава 1. Проблемы экологии
- •1.1 Эколого-физиологические исследования
- •1.1.1 Природные факторы среды и их влияние на организм
- •1.1.2. Световое излучение и его действие на организм
- •1.1.3. Влияние магнитного поля на организм
- •1.1.4. Воздушная среда – метеорологические факторы
- •Глава 2. Природные экологические адаптации
- •2.1. Адаптации к температурным условиям
- •2.1.1. Границы температурной выносливости живых организмов
- •2.1.2. Тепловой баланс организмов
- •2.1.3 Температурные адаптации пойкилотермных организмов
- •2.1.4 Элементы регуляции температуры у растений
- •2.1.5 Механизмы терморегуляции у пойкилотермных животных
- •2.1.6 Температурные адаптации гомойотермных организмов
- •2.1.7 Экологические выгоды пойкилотермии и гомойотермии
- •2.1.8 Полярная одышка
- •2.2 Адаптации к условиям освещенности
- •2.2.1 Экологические группы растений по отношению к свету и их адаптивные особенности
- •2.2.2 Роль света в жизни животных
- •2.3 Поддержание водно-солевого гомеостаза
- •2.3.1 Адаптация растений к поддержанию водного баланса
- •2.3.2 Водный баланс наземных животных
- •2.4 Влияние гипоксии на газотранспортную систему человека и животных
- •Глава 3 Антропогенные воздействия на окружающую среду
- •3.1 Основные виды антропогенных воздействий на окружающую среду
- •3.2 Загрязнение атмосферы
- •3.2.1 Основные источники антропогенного загрязнения атмосферы
- •3.2.2 Экологические последствия глобального загрязнения атмосферы
- •3.2.2.1 Возможное потепление климата («парниковый эффект»)
- •3.2.2.2 Разрушение озонового слоя
- •3.2.2.3 Кислотные дожди
- •3.2.3 Основные загрязнители атмосферы и здоровье человека
- •3.3 Антропогенные воздействия на гидросферу
- •3.3.1 Загрязнение гидросферы
- •3.3.2 Экологические последствия загрязнения гидросферы
- •3.3.3 Состояние гидросферы и здоровье человека
- •3.4 Антропогенные воздействия на литосферу
- •3.4.1 Деградация почв
- •3.4.2 Загрязнение литосферы и здоровье человека
- •3.5 Антропогенные воздействия на биотические сообщества
- •3.5.1. Антропогенные воздействия на леса и другие растительные сообщества
- •3.5.2 Антропогенные воздействия на животный мир
- •Глава 4 Техногенные факторы в изменении окружающей среды
- •4.1 Влияние химических факторов окружающей среды на систему крови
- •4.2 Проблема возникновения отравлений фосфорорганическими ингибиторами ацетилхолинэстеразы
- •4.2.1 Характеристика фосфорорганических инсектицидов применяемых в сельском хозяйстве и отравления возникающие в результате их применения
- •4.2.2 Механизм антихолинэстеразного действия
- •4.2.3 Действие на м-холинорецепторы
- •4.2.4 Клинические эффекты антихолинэстеразных средств
- •4.2.5 Антимиорелаксантный эффект
- •4.2.6 Антимиастенический эффект
- •4.2.7 Влияние на вегетативные ганглии
- •4.2.8 Влияние на тонус гладких мышц полых органов
- •4.2.9 Дистантное действие ацетилхолина и его токсические проявления
- •4.3 Токсикоз при почечной недостаточности
- •4.4 Токсикоз при абстиненции
- •4.5 Патологические последствия курения табака
- •4.5.1 Влияние табачных изделий на состояние организма человека и животных
- •4.6 Ожирение как медико-социальная проблема
- •Глава 5 Общие патогенетические механизмы токсикоза
- •5.1 Роль молекул средней массы в патогенезе токсикозов
- •5.1.1 Группы метаболитов со свойствами эндогенных токсинов
- •5.1.2 Биологические эффекты молекул средней массы
- •5.1.3 Биохимические методы определения веществ со свойствами эндогенных токсинов
- •5.1.4 Методы определения внсмм
- •5.2. Микроциркуляторные расстройства
- •5.2.1 Типичные нарушения микроциркуляции
- •5.2.1.1 Внутрисосудистые нарушения
- •5.2.1.2 Нарушение проницаемости сосудов обмена
- •5.2.1.3 Транскапиллярный транспорт
- •5.2.2.1 Внесосудистые нарушения
- •5.3. Перекисное окисление липидов
- •5.3.1 Физико-химические основы свободно радикального окисления
- •5.3.2 Повреждающее действие свободных радикалов
- •5.3.3 Регуляция свободнорадикального окисления
- •5.3.4 Радикалы, встречающиеся в организме
- •5.3.5 Функции ненасыщенных жирных кислот в организме
- •5.3.6 Окисление ненасыщенных жирных кислот
- •5.3.7 Регуляция процессов перекисного окисления ненасыщенных жирных кислот
- •Глава 6 Антиоксидантная система организма
- •6.1 Классификация антиоксидантов
- •1 Антиоксиданты косвенного действия
- •2 Антиоксиданты прямого действия
- •6.2 Ферментные антиоксиданты
- •6.3 Низкомолекулярные вещества
- •6.4 Синтетические антиоксиданты
- •6.5 Структурные аналоги природных антиоксидантов
- •6.6 Синергизм антиоксидантов
- •6.7 Прооксидантные свойства антиоксидантов
- •6.8 Кислородзависимая природа образования свободных радикалов
- •Глава 7 Экология и адаптация
- •7.1 Характер адаптивных сдвигов вызванных химическим загрязнением окружающей среды
- •7.2 Резистентность организма – стратегия выживания
- •7.2.1 Значение изучения резистентности
- •7.2.2 Природа и категории устойчивости животных к заболеваниям
- •7.2.3 Основы иммунологии и микробиологии, защитные силы организма
- •7.2.4 Специфическая и неспецифическая резистентность
- •7.3 Пути повышения защитных сил организма
- •7.3.1 Колостральный иммунитет, факторы его определяющие и корректирующие
- •7.4 Прогнозирование устойчивости животных
- •7.4.1 Устойчивость к жаре
- •7.4.2 Изменение устойчивости
- •7.4.3 Влияние обмена веществ на сопротивляемость
- •7.4.4 Зависимость состояния организма от условий содержания и кормления
- •7.4.5 Внешние и внутренние факторы снижения защитных свойств организма
- •Глава 8 Организация экологичесчкого мониторинга и методы иследования
- •8.1 Мутагенное влияние химических факторов на систему крови
- •8.2 Краткая экологическая характеристика изучаемых районов
- •8.3 Влияние химического загрязнения окружающей среды на морфоцитологические показатели крови
- •8.3.1 Особенности состояния эритроцитов крови при воздействии химического загрязнения окружающей среды
- •8.4 Влияние химического загрязнения окружающей среды на лейкоцитарную формулу крови
- •7.5. Особенности состояния тромбоцитов крови при воздействии химического загрязнения окружающей среды
- •Глава 9 Экологический стресс
- •9.1 Механизм и последствия стресса как нарушение экологического благополучия организма
- •9.1.1 Стресс и продуктивность животных
- •9.1.2. Стресс-факторы, их классификация
- •9.1.3 Механизм развития стресс-реакций
- •9.1.4 Влияние стрессов на здоровье и продуктивность
- •9.1.5 IIрофилактика состояний стресса
- •9.2 Гипоталамо-гипофизарно-адренокортикальная система как одна из ведущих адаптационных систем организма
- •9.2.1 Онтогенетические особенности реакции гипоталамо-гипофизарной-адренокортикальной системы
- •Глава 10 Принципы детоксикации организма
- •10.1 Биотрансформация токсинов в организме
- •10.2 Специфическое лечение токсикозов
- •10.3 Методы профилактики и ослабления течения лучевой болезни
- •10.4 Антидотная терапия и прифилактика отравлений фои
- •10.5 Лечение алкогольного абстинентного синдрома
- •2. Седативная терапия
- •10.6 Неспецифическое лечение токсикозов
- •10.6.1 Применение вакуум-градиентной терапии для лечения лучевых поражений
- •10.6.2 Применение вакуум-градиентной терапии для лечения отравлений фосфорорганическими средствами
- •10.6.3 Применение вакуум-градиентной терапии для лечения хпн
- •10.6.4 Влияние лод на выполнение физической нагрузки
- •Заключение
5.2.1.2 Нарушение проницаемости сосудов обмена
Сосуды обмена (капиллярные сосуды и венулы) характеризуются двумя основными функциями: осуществлением движения крови и способностью пропускать в направлении кровь–ткань и обратно воду, растворенные газы, кристаллогидраты и крупномолекулярные (белковые) вещества.
Регуляция кровообращения в системе сосудов обмена всецело подчиняется закономерностям пре- и посткапиллярного кровотока, а также местным гуморальным влияниям.
Морфологической основой проницаемости капиллярных сосудов и венул является эндотелий и базальная мембрана. Различная по интенсивности и степени избирательности проницаемость капилляров и венул различных сосудистых областей объясняется особенностями их строения (толщиной эндотелиоцитов, базальной мембраны, наличием или отсутствием пор, пиноцитозных путей) и функционального состояния указанных структур.
5.2.1.3 Транскапиллярный транспорт
Механизм перехода вещества через сосудистую стенку может быть активным и пассивным. Если силы, которые обеспечивают транспорт веществ, находятся за пределами сосудистой стенки, а транспорт осуществляется в соответствии с . концентрационным и электрохимическим градиентами, такой вид транспорта называется пассивным. Существует он главным образом для переноса воды, растворенных газов и низкомолекулярных веществ, т. е. таких веществ, которые свободно проникают через сосуды обмена, в связи с чем изменение проницаемости существенно не сказывается на скорости их перехода.
Активный характер транспорта веществ носит тогда, когда он осуществляется против концентрационного и электрохимического градиентов (транспорт «вгору») и для его осуществления требуется определенное количество энергии. Особенно велика роль данного механизма в транспорте белков и других, в том числе чужеродных, макромолекул.
Пассивный механизм перехода веществ через стенку микрососудов в свою очередь может быть разделен на два вида: ультрафильтрацию и диффузию. Основная роль в этом процессе принадлежит диффузии, скорость которой зависит от характера вещества (размера молекулы, ее конфигурации, степени гидратации, расположения электрического заряда), проницаемости стенки капиллярных сосудов и тканей, количества функционирующих сосудов, степени их расширения и скорости кровотока в них. Чем крупнее молекула, тем меньше скорость ее диффузии через стенку капиллярного сосуда. Чем выше проницаемость стенки капиллярного сосуда, чем больше количество функционирующих микрососудов и скорость кровотока в них, тем больше скорость диффузии. Следовательно, в физиологических условиях изменение интенсивности транскапиллярного обмена осуществляется преимущественно вследствие изменений интенсивности кровотока без нарушения структур базальной мембраны, т. е. без нарушения сосудистой проницаемости в узком значении этого слова.
При патологии часто наблюдается увеличение или уменьшение интенсивности перехода веществ через сосудистую стенку не только вследствие изменения интенсивности кровотока, но и в результате истинного нарушения сосудистой проницаемости, которое сопровождается изменением структуры стенки сосудов обмена. В морфологическом отношении повышение сосудистой проницаемости характеризуется увеличением промежутков между эндотелиоцитами вследствие их сокращения и усилением везикулярного транспорта, в функциональном – усиленным переходом крупномолекулярных веществ (белков).
В механизме повышения сосудистой проницаемости при травме, ожоге, воспалении, аллергии большое значение придают кислородному голоданию тканей, ацидотическому сдвигу реакции среды, накоплению местных метаболитов, образованию биологически активных веществ, активным глобулинам плазмы крови (α-, β-глобулины), катионным белкам и гистонам нейтрофильных гранулоцитов. При шоке различного происхождения возможно и генерализованное нарушение сосудистой проницаемости.
По современным представлениям биологически активные амины (гистамин, серотонин) и их естественные либераторы, а также брадикинин оказывают кратковременное действие на проницаемость сосудистой стенки посредством влияния на контрактильные элементы сосудов, главным образом венул. При различных патологических процессах, особенно при воспалении, вызванном слабыми агентами (тепло, ультрафиолетовые лучи, некоторые химические вещества), эти факторы воспроизводят раннюю фазу повышения сосудистой проницаемости (10–60 мин). Более поздние нарушения проницаемости сосудистой стенки (от 60 мин до нескольких суток) вызываются протеазами, каллидином, глобулинами (α-, β-глобулины), катионными белками нейтрофильных гранулоцитов. Действие этих факторов направлено на стенку капиллярных сосудов – межклеточный цемент эндотелия и базальную мембрану – и заключается в физико-химических изменениях (в частности, деполимеризации) сложных белково-полисахаридных комплексов. При сильном повреждении тканей повышение проницаемости сосудистой стенки имеет монофазный характер и обусловлено влиянием протеаз и кининов.
При некоторых патологических процессах (феномен Шварцмана, Артюса) и заболеваниях инфекционной природы (корь, скарлатина, грипп и др.), при воздействии сильных повреждающих факторов (термических, ионизирующей радиации и др.) наряду с признаками повышенной сосудистой проницаемости в виде увеличенного выхода макромолекулярных веществ можно наблюдать диапедез эритроцитов и даже микрокровоизлияния. Предполагают, что диапедез эритроцитов в околососудистую ткань осуществляется пассивно сквозь межэндотелиальные промежутки под давлением крови. Микрокровоизлияния являются следствием грубых структурных нарушений целости сосудистой стенки, повышающих ее хрупкость.