
- •Экологическая физиология
- •Глава 1. Проблемы экологии 6
- •Глава 2. Природные экологические адаптации 27
- •Глава 3 Антропогенные воздействия на окружающую среду 90
- •Глава 4 Техногенные факторы в изменении окружающей среды 133
- •Глава 5 Общие патогенетические механизмы токсикоза 194
- •Глава 6 Антиоксидантная система организма 257
- •Глава 7 Экология и адаптация 294
- •Глава 8 Организация экологичесчкого мониторинга и методы иследования 389
- •Глава 9 Экологический стресс 434
- •Глава 10 Принципы детоксикации организма 463
- •Глава 1. Проблемы экологии
- •1.1 Эколого-физиологические исследования
- •1.1.1 Природные факторы среды и их влияние на организм
- •1.1.2. Световое излучение и его действие на организм
- •1.1.3. Влияние магнитного поля на организм
- •1.1.4. Воздушная среда – метеорологические факторы
- •Глава 2. Природные экологические адаптации
- •2.1. Адаптации к температурным условиям
- •2.1.1. Границы температурной выносливости живых организмов
- •2.1.2. Тепловой баланс организмов
- •2.1.3 Температурные адаптации пойкилотермных организмов
- •2.1.4 Элементы регуляции температуры у растений
- •2.1.5 Механизмы терморегуляции у пойкилотермных животных
- •2.1.6 Температурные адаптации гомойотермных организмов
- •2.1.7 Экологические выгоды пойкилотермии и гомойотермии
- •2.1.8 Полярная одышка
- •2.2 Адаптации к условиям освещенности
- •2.2.1 Экологические группы растений по отношению к свету и их адаптивные особенности
- •2.2.2 Роль света в жизни животных
- •2.3 Поддержание водно-солевого гомеостаза
- •2.3.1 Адаптация растений к поддержанию водного баланса
- •2.3.2 Водный баланс наземных животных
- •2.4 Влияние гипоксии на газотранспортную систему человека и животных
- •Глава 3 Антропогенные воздействия на окружающую среду
- •3.1 Основные виды антропогенных воздействий на окружающую среду
- •3.2 Загрязнение атмосферы
- •3.2.1 Основные источники антропогенного загрязнения атмосферы
- •3.2.2 Экологические последствия глобального загрязнения атмосферы
- •3.2.2.1 Возможное потепление климата («парниковый эффект»)
- •3.2.2.2 Разрушение озонового слоя
- •3.2.2.3 Кислотные дожди
- •3.2.3 Основные загрязнители атмосферы и здоровье человека
- •3.3 Антропогенные воздействия на гидросферу
- •3.3.1 Загрязнение гидросферы
- •3.3.2 Экологические последствия загрязнения гидросферы
- •3.3.3 Состояние гидросферы и здоровье человека
- •3.4 Антропогенные воздействия на литосферу
- •3.4.1 Деградация почв
- •3.4.2 Загрязнение литосферы и здоровье человека
- •3.5 Антропогенные воздействия на биотические сообщества
- •3.5.1. Антропогенные воздействия на леса и другие растительные сообщества
- •3.5.2 Антропогенные воздействия на животный мир
- •Глава 4 Техногенные факторы в изменении окружающей среды
- •4.1 Влияние химических факторов окружающей среды на систему крови
- •4.2 Проблема возникновения отравлений фосфорорганическими ингибиторами ацетилхолинэстеразы
- •4.2.1 Характеристика фосфорорганических инсектицидов применяемых в сельском хозяйстве и отравления возникающие в результате их применения
- •4.2.2 Механизм антихолинэстеразного действия
- •4.2.3 Действие на м-холинорецепторы
- •4.2.4 Клинические эффекты антихолинэстеразных средств
- •4.2.5 Антимиорелаксантный эффект
- •4.2.6 Антимиастенический эффект
- •4.2.7 Влияние на вегетативные ганглии
- •4.2.8 Влияние на тонус гладких мышц полых органов
- •4.2.9 Дистантное действие ацетилхолина и его токсические проявления
- •4.3 Токсикоз при почечной недостаточности
- •4.4 Токсикоз при абстиненции
- •4.5 Патологические последствия курения табака
- •4.5.1 Влияние табачных изделий на состояние организма человека и животных
- •4.6 Ожирение как медико-социальная проблема
- •Глава 5 Общие патогенетические механизмы токсикоза
- •5.1 Роль молекул средней массы в патогенезе токсикозов
- •5.1.1 Группы метаболитов со свойствами эндогенных токсинов
- •5.1.2 Биологические эффекты молекул средней массы
- •5.1.3 Биохимические методы определения веществ со свойствами эндогенных токсинов
- •5.1.4 Методы определения внсмм
- •5.2. Микроциркуляторные расстройства
- •5.2.1 Типичные нарушения микроциркуляции
- •5.2.1.1 Внутрисосудистые нарушения
- •5.2.1.2 Нарушение проницаемости сосудов обмена
- •5.2.1.3 Транскапиллярный транспорт
- •5.2.2.1 Внесосудистые нарушения
- •5.3. Перекисное окисление липидов
- •5.3.1 Физико-химические основы свободно радикального окисления
- •5.3.2 Повреждающее действие свободных радикалов
- •5.3.3 Регуляция свободнорадикального окисления
- •5.3.4 Радикалы, встречающиеся в организме
- •5.3.5 Функции ненасыщенных жирных кислот в организме
- •5.3.6 Окисление ненасыщенных жирных кислот
- •5.3.7 Регуляция процессов перекисного окисления ненасыщенных жирных кислот
- •Глава 6 Антиоксидантная система организма
- •6.1 Классификация антиоксидантов
- •1 Антиоксиданты косвенного действия
- •2 Антиоксиданты прямого действия
- •6.2 Ферментные антиоксиданты
- •6.3 Низкомолекулярные вещества
- •6.4 Синтетические антиоксиданты
- •6.5 Структурные аналоги природных антиоксидантов
- •6.6 Синергизм антиоксидантов
- •6.7 Прооксидантные свойства антиоксидантов
- •6.8 Кислородзависимая природа образования свободных радикалов
- •Глава 7 Экология и адаптация
- •7.1 Характер адаптивных сдвигов вызванных химическим загрязнением окружающей среды
- •7.2 Резистентность организма – стратегия выживания
- •7.2.1 Значение изучения резистентности
- •7.2.2 Природа и категории устойчивости животных к заболеваниям
- •7.2.3 Основы иммунологии и микробиологии, защитные силы организма
- •7.2.4 Специфическая и неспецифическая резистентность
- •7.3 Пути повышения защитных сил организма
- •7.3.1 Колостральный иммунитет, факторы его определяющие и корректирующие
- •7.4 Прогнозирование устойчивости животных
- •7.4.1 Устойчивость к жаре
- •7.4.2 Изменение устойчивости
- •7.4.3 Влияние обмена веществ на сопротивляемость
- •7.4.4 Зависимость состояния организма от условий содержания и кормления
- •7.4.5 Внешние и внутренние факторы снижения защитных свойств организма
- •Глава 8 Организация экологичесчкого мониторинга и методы иследования
- •8.1 Мутагенное влияние химических факторов на систему крови
- •8.2 Краткая экологическая характеристика изучаемых районов
- •8.3 Влияние химического загрязнения окружающей среды на морфоцитологические показатели крови
- •8.3.1 Особенности состояния эритроцитов крови при воздействии химического загрязнения окружающей среды
- •8.4 Влияние химического загрязнения окружающей среды на лейкоцитарную формулу крови
- •7.5. Особенности состояния тромбоцитов крови при воздействии химического загрязнения окружающей среды
- •Глава 9 Экологический стресс
- •9.1 Механизм и последствия стресса как нарушение экологического благополучия организма
- •9.1.1 Стресс и продуктивность животных
- •9.1.2. Стресс-факторы, их классификация
- •9.1.3 Механизм развития стресс-реакций
- •9.1.4 Влияние стрессов на здоровье и продуктивность
- •9.1.5 IIрофилактика состояний стресса
- •9.2 Гипоталамо-гипофизарно-адренокортикальная система как одна из ведущих адаптационных систем организма
- •9.2.1 Онтогенетические особенности реакции гипоталамо-гипофизарной-адренокортикальной системы
- •Глава 10 Принципы детоксикации организма
- •10.1 Биотрансформация токсинов в организме
- •10.2 Специфическое лечение токсикозов
- •10.3 Методы профилактики и ослабления течения лучевой болезни
- •10.4 Антидотная терапия и прифилактика отравлений фои
- •10.5 Лечение алкогольного абстинентного синдрома
- •2. Седативная терапия
- •10.6 Неспецифическое лечение токсикозов
- •10.6.1 Применение вакуум-градиентной терапии для лечения лучевых поражений
- •10.6.2 Применение вакуум-градиентной терапии для лечения отравлений фосфорорганическими средствами
- •10.6.3 Применение вакуум-градиентной терапии для лечения хпн
- •10.6.4 Влияние лод на выполнение физической нагрузки
- •Заключение
3.3 Антропогенные воздействия на гидросферу
Вода – важнейший агент и фактор географической среды. Во многих странах мира отмечается ухудшение геоэкологического состояния водных объектов и прилегающих к ним территорий, связанное в первую очередь со значительно возросшим антропогенным воздействием на природные воды. Оно проявляется в изменении как водных запасов и гидрологического режима водотоков и водоемов, так и качества вод. Своей производственной деятельностью человек оказывает влияние на все основные элементы гидрологического цикла: осадки, испарение, сток, однако степень этого влияния на разные компоненты далеко не одинакова.
Нарастание дефицита водных ресурсов и прогрессирующее ухудшение их качества объединяются под общим понятием деградации природных вод. В настоящее время наибольшее антропогенное воздействие испытывают речные системы. Серьезнейшая экологическая проблема – восстановление водности и чистоты малых рек (длиной не более 100 км), которые представляют собой наиболее уязвимое звено в речных экосистемах.
Причины сложившейся ситуации в области водных ресурсов достаточно разнообразны. Наиболее существенное влияние на водные объекты суши оказывают факторы, которые непосредственно связаны с масштабами водопотребления и водоотведения. Сюда можно отнести системы, которые непосредственно влияют на объект путем прямых изъятий воды и сбросов природных и сточных вод. Это системы промышленного и коммунального водоснабжения, каналы переброски стока, коллекторы сточных вод. Так, уровень некогда многоводного Аральского моря, начиная с 60-х гг., катастрофически понижается, в связи с недопустимо высокими показателями забора воды из Амударьи и Сырдарьи. В результате объем Аральского моря сократился более чем наполовину, уровень моря снизился на 13 м, а соленость воды (минерализация) увеличилась в 2,5 раза.
Прямое воздействие на водоемы может также оказываться за счет влияния на их природную структуру. Примерами могут служить создание в руслах рек водохранилищ и прудов, обвалование и спрямление русел рек и берегов озер, выемки грунта из рек и водоемов и т.п. Негативно сказываться на состоянии водных объектов могут и другие мероприятия в области землепользования (осушение болот и заболоченных земель, вырубка и посадка лесов и т.п.). Промышленные и энергетические объекты, нарушающие газовый состав и загрязняющие атмосферу, также оказывают воздействие на гидросферу посредством природных круговоротов веществ и изменения климатических условий.
Истощение вод следует понимать как недопустимое сокращение их запасов в пределах определенной территории (для подземных вод) или уменьшение минимально допустимого стока (для поверхностных вод). И то и другое приводит к неблагоприятным экологическим последствиям, нарушая сложившиеся экологические связи в системе человек – биосфера.
3.3.1 Загрязнение гидросферы
Загрязнение вод представляет собой сегодня одну из наиболее острых проблем мирового масштаба. Даже в России, которая имеет один из самых высоких водных потенциалов в мире, уже в конце ХХ века 70% рек и озер утратили свои качества как источники питьевого водоснабжения.
Согласно рекомендациям Всемирной организации здоровья вода в водоеме считается загрязненной, если в результате изменения ее состава или состояния она становится менее пригодной для любых видов водопользования, в то время как в природном состоянии вода соответствовала этим требованиям.
Основные загрязнители гидросферы можно разделить на несколько групп.
Химические загрязнители. Химическое загрязнение воды является наиболее распространенным и стойким. Сегодня более 400 видов веществ могут рассматриваться как потенциальные загрязнители вод. Среди них первоочередное значение имеют нефть и нефтепродукты, синтетические поверхностно-активные вещества (СПАВ), пестициды, тяжелые металлы, диоксины и другие соединения.
2. Биологические загрязнители. Бактериальное загрязнение выражается в появлении в воде патогенных бактерий, вирусов (до 700 видов), простейших, грибов и др. Этот вид загрязнений носит временный характер.
3. Физические загрязнители, меняющие прозрачность (мутность) воды, ее температуру и другие показатели. Специфическим видом физического загрязнения гидросферы является термическое загрязнение. Когда электростанции употребляют воду для конденсации отработанного пара, они возвращают ее в водоем подогретой на 10–30 °С. Это приводит к уменьшению содержания кислорода в водной среде, увеличению токсичности имеющихся в ней загрязнителей, уменьшению доступа света к водной растительности, стимулированию роста вредных синезеленых водорослей и т. п.
4. Радиоактивные загрязнители. Наиболее вредны «долгоживущие» радиоактивные элементы (стронций-90, уран, радий-226, цезий и др.). Радиоактивные элементы попадают в поверхностные водоемы прежде всего при несоблюдении правил захоронения радиоактивных отходов. В подземные воды уран, стронций и другие элементы попадают также в результате взаимодействия подземных вод с радиоактивными горными породами.
В настоящее время все источники загрязнения гидросферы можно условно разделить на четыре основные группы.
1. Атмосферные водяные пары. Приносят в гидросферу массу загрязнителей промышленного происхождения. Взаимодействуют с оксидами серы и азота в воздухе, образуя кислотные дожди. При стекании со склонов атмосферные и талые воды увлекают с городских улиц и промышленных предприятий мусор, нефтепродукты, кислоты, фенолы и др.
2. Городские сточные воды, включающие преимущественно бытовые стоки, содержащие фекалии, моющие средства (детергенты), микроорганизмы, в том числе патогенные.
3. Промышленные сточные воды, образующиеся в самых разнообразных отраслях промышленности. Наиболее активно потребляют и загрязняют воду черная металлургия, химическая, лесохимическая, нефтеперерабатывающая промышленность, энергетика.
4. Сельскохозяйственные стоки, содержащие смытые в процессе эрозии частицы почвы, соединения, входящие в состав удобрений, пестициды, помет сельскохозяйственных животных.
В мировом масштабе в качестве основного загрязнителя гидросферы сегодня выступают нефть и нефтепродукты, попадающие в водную среду в результате добычи нефти, ее транспортировки, переработки и использования. Попавшая в морскую среду нефть начинает растекаться по поверхности воды. Легкие фракции нефти быстро испаряются. Таким образом, часто случающиеся катастрофы танкеров служат причиной серьезного загрязнения не только моря, но и атмосферы. Оставшиеся после испарения фракции нефти образуют смолистые «комки», способные погружаться на дно. Раньше этот эффект широко использовался с помощью диспергирующих агентов, погружающих нефть на дно. Однако впоследствии такой способ отвергли, так как диспергирующий агент оказывался токсичнее самой нефти. Помимо растворения и испарения нефть, оказавшись в водной среде, подвергается интенсивному фотохимическому и биологическому окислению, что приводит к снижению содержания кислороды в воде. Наиболее легко растворимой в водной среде частью нефти являются ароматические углеводороды, которые, кстати, считаются и наиболее токсичными. Именно они представляют смертельную опасность для рыб, особенно мальков. Чрезвычайно токсично также дизельное топливо, загрязняющее в первую очередь портовые акватории вследствие халатности (а нередко – и преступных действий) команд судов. Крайне чувствительны к нефтяному загрязнению птицы. Попытки их спасти, как правило, безуспешны, поскольку оперение птиц хотя и гидрофобно, но лишено защиты от нефти и нефтепродуктов. Число погибших птиц только у берегов Англии достигает 50 тысяч в год. Однажды в Швеции в результате загрязнения воды нефтью погибло 30 тысяч уток-морянок. Гибнут также иглокожие, лангусты, креветки и многие другие морские беспозвоночные.
Среди других продуктов промышленного производства особое место по своему отрицательному воздействию на водную среду занимают детергенты, или поверхностно активные вещества (ПАВ). Поверхностно-активные вещества (ПАВ) – основа любого синтетического моющего средства. В процессе стирки ПАВ обеспечивают отрыв грязевых частиц от очищаемой поверхности и обеспечивают их растворение. Существуют три основных вида ПАВ: анионные, катионные и неионогенные. При этом самыми опасными являются анионные (А-ПАВ), способные вызывать аллергию, а также нарушения иммунитета.
ПАВ в настоящее время относятся к числу наиболее распространенных загрязнителей объектов окружающей среды, прежде всего водных ресурсов. Они плохо поддаются очистке, а между тем в водоемы их попадает не менее половины от начального количества. Детергенты часто образуют в водоемах слои пены, толщина которых на шлюзах и порогах достигает 1 м и более. При определенных условиях эти вещества отрицательно влияют на качество подземных питьевых вод и способность водоемов к самоочищению, на теплокровные организмы, флору и фауну природных вод. Стойкая пена водных растворов ПАВ препятствует аэрации (процессу обогащения воды кислородом), что ухудшает биохимическую очистительную способность водоемов. Кроме того, загрязнение воды ПАВ приводит к существенному усилению коррозии в ней металлов. Легко проникая сквозь грунты, ПАВ могут попасть в питьевую воду через очистные сооружения водопроводов и впоследствии негативно воздействовать на организм человека.
Наглядным примером могут служить общие изменения показателей крови в организмах рыб, спровоцированные влиянием некоторых ПАВ различных концентраций. Так, концентрация веществ высокой и средней токсичности вызывает увеличение числа эритроцитов и содержания гемоглобина на 17–23%, одновременно наблюдается резкое уменьшение количества лейкоцитов. Эти процессы говорят о подавлении защитных функций организма под воздействием ядовитых веществ. Увеличение гемоглобина и числа эритроцитов является общей компенсаторной реакцией, которую вызывают абиотические и биотические факторы среды, нарушающие газообмен в организмах рыб.
В современных условиях одним из наиболее значительных источников загрязнения водных ресурсов становится сельскохозяйственное производство, которое является источником удобрений, в большом количестве попадающих в водоемы. Это приводит к процессам эвтрофикации водоемов вследствие загрязнения их азотными и фосфорными удобрениями.
Все чаще водные ресурсы загрязняются гербицидами и пестицидами. При этом степень их накопления и проявления токсичности в значительной степени зависит от гидродинамических и термических характеристик водного объекта. Например, в непроточном водоеме ядохимикат аккумулируется в донных отложениях, которые становятся источником хронического загрязнения. С повышением температуры токсическое воздействие практически всех ядохимикатов усиливается. Часто в пищевых цепях ихтиофауны наблюдается своеобразный эффект усиления концентрации ядохимикатов. Так, если морской планктон содержит одну условную единицу ДДТ, то мальки рыб – уже 25 единиц, хищная морская птица – около 1500 единиц, а для крупных морских животных эти показатели еще выше.