- •1.Содержание дисциплины “Теория механизмов и машин” и ее значение для образования
- •2. Связь теории механизмов и машин с другими областями знаний.
- •3.Что такое механизм?
- •4 Что такое машина?
- •5.Как подразделяются машины по назначению и области использования?
- •6.Основные виды механизмов, используемых в современном машиностроении?
- •7.Строение механизмов. Определение звена, кинематической пары, кинематической цепи.
- •8 .Звенья механизма и их классификация
- •9.Кинематические пары и их классификация.
- •11. Как определяется число степеней свободы пространственного и плоского механизма?
- •12. Кинематические цепи и их классификация.
- •13 Принцип образования механизмов по Ассуру.
- •14. Как определяется класс механизма?
- •15. Структурный анализ механизмов. Цель и задачи структурного анализа.
- •16. Определение степени свободы механизма
- •17. Группы Ассура, их классификация.
- •18. Формула строения механизма, его класс и порядок.
- •19. Избыточные связи и "лишние" степени свободы
- •20 Группа Ассура как статически определимая система
- •Раздел 2
- •1. Цели, задачи и методы кинематического анализа рычажных механизмов.
- •2.Планы скоростей для плоских механизмов.
- •3. План ускорений для плоских механизмов
- •4.Определение линейной скорости и линейного ускорения любой точки, лежащей на звене.
- •5.Определение угловой скорости и углового ускорения звена, совершающего сложное движение.
- •6. Передаточные отношения механизмов с неподвижными осями валов
- •7. Виды зубчатых механизмов
- •8. Графоаналитический метод определения кинематических параметров: планы скоростей и ускорений.
- •9. Аналитический метод кинематического исследования
- •10. Передаточное отношение планетарного зубчатого механизма.
- •11. Многозвенные механизмы с неподвижными осями валов и
- •13. Определение передаточного отношения планетарного механизма построением картины линейных и угловых скоростей.
- •16. Цель, задачи и принципы силового расчета
- •18. Силовой расчет механизмов: основные допущения, принципы и порядок силового расчета
- •19. Классификация сил. Внешние и внутренние силы. Определение сил инерции звеньев.
- •20 Метод замкнутых векторных контуров заключается в следующем:
- •21.Графический метод силового расчета (метод планов сил).
- •22.Крайние «мертвые» положения механизма.
- •24. Определение реакций в кинематических парах, порядок их расчета.
- •25. Определение реакции в промежуточном шарнире
- •27.Задачи динамического анализа механизма
- •28. Динамический анализ рычажных механизмов. Цели и задачи.
- •29. Режимы движения машины
- •30.Установившееся движение машинного агрегата. Неравномерность движения
- •31. Динамическая модель механизма
- •32. Уравнение движения механизма и звена динамической модели в форме интеграла энергии и форме моментов (энергетическая и дифференциальная формы).
- •33.Механический коффициент полезного действия
- •35.Уравнение движения механизма в дифференциальном виде
- •Раздел 3.1. Эвольвентное зубчатое колесо: основные параметры.
- •2. Основная теорема плоского зацепления
- •4. Модуль зубчатого колеса.
- •7. Методы нарезания эвольвентных зубчатых колёс.
- •8. Исходный, производящий контур режущего инструмента.
- •9.Цели смещения исходного производящего контура инструмента.
- •10. Качественные показатели работы зубчатых передач. Влияние смещения исходного производящего контура инструмента на качественные показатели работы зубчатого зацепления.
- •11. Дополнительные условия при синтезе эвольвентного,
- •12.Синтез планетарных зубчатых механизмов.
- •13.Ограничительные условия при синтезе планетарных механизмов
- •14.Назначение и виды кулачковых механизмов
- •15.Этапы синтеза кулачкового механизма
- •16.Угол давления в кулачковом механизме.
- •17.Метод графического интегрирования при синтезе кулачковых механизмов
- •18 Построение профиля кулачка.
- •19, Выбор радиуса ролика (скругления рабочего участка толкателя).
- •20 Общие методы синтеза механизмов
- •22 Условие существования кривошипа
- •23. Проектирование механизма по заданным положениям звеньев
- •24Проектирование механизма по заданному коэффициенту изменения средней скорости выходного звена
20 Общие методы синтеза механизмов
Проектирование механизмов представляет собой сложную комплексную проблему, решение которой можно разбить на несколько самостоятельных этапов.
Первым этапом проектирования является установление кинематической схемы механизма, обеспечивающей требуемый вид и закон движения. Именно этот этап проектирования в основном рассматривается в теории механизмов и машин. Раздел теории механизмов, посвященный методам проектирования по заданным кинематическим условиям схем механизмов, получил название синтеза механизмов.
В общем случае задачи синтеза механизмов являются многопараметрическими, так как число параметров механизма никогда не бывает однозначным.
В настоящее время существует ряд способов решения таких задач с использованием метода параметрической оптимизации. При использовании этого метода обычно одно условие принимается за основное. Тогда все остальные условия будут дополнительными.
Основное условие обычно выражается в виде некоторой функции, экстремум которой должен определить требуемые параметры синтезируемого механизма. Эту функцию обычно называют целевой функцией (или критерием оптимизации).
Так, например, для зубчатого механизма это может его передаточное отношение, для кулачкового механизма – заданный закон движения толкателя, для рычажного механизма – оценка отклонения траектории движения заданной точки от требуемой траектории или заданный закон движения выходного звена и т.д.В зависимости от исходных данных различают следующие виды синтеза:
- геометрический, когда заданы отдельные положения звеньев или траектории отдельных точек;
- кинематический, когда заданы некоторые скорости, ускорения или их соотношения;
- динамический, когда заданы действующие силы или наложены некоторые ограничения на динамические параметры.
К способам синтеза относятся:
а) опытный, когда экспериментальным путём подбираются размеры звеньев для реализации заданной траектории;
б) графический;
в) аналитический.
21 Построение крайних положений звеньев механизма (определение размеров звеньев).
Крайние положения механизма (рис. 1.4)
Крайние положения механизма (рис. 1.4) определяется взаимным расположением 323h77fd кривошипа и кулисы, поэтому построение крайних положений начинаем с этих звеньев. Для начала определяем размеры всех звеньев. Крайние положения механизма характеризуются тем, что кривошип перпендикулярен кулисе. При этом в части механизма слева от точки С биссектриса угла качения горизонтальна (т.е. перпендикулярна направляющей суппорта). Вычертив механизм в двух крайних положениях и , определяем угол кулисы из соотношения , откуда . Так как длина хорды равна , то .Радиус кривошипа определим как В выбранном масштабе, характеризуемом масштабным коэффициентом μ=0.002 м/мм, вначале строим неподвижную точку О1 (ось вращения кривошипа), затем проводим окружность радиусом АО1 (траектория движения точки А). Крайние положения точки А будут в тех двух случаях, когда кривошип и кулиса перпендикулярны друг другу. В первом случае обозначим как А0 - начало рабочего хода. Во втором случае - конец рабочего хода. Положение точек, B и B7, D и D7 определяются при построении крайних положений механизма.
Направление вращения кривошипа у рабочих машин следует задавать таким образом, чтобы сила полезного сопротивления, действующая па выходное звено во время рабочего хода, была направлена в сторону, противоположную движению ползуна ( резца), а шатун работал на сжатие.
Направление вращения кривошипа желательно выбирать таким, чтобы при рабочем ходе на шатун действовали бы растягивающие усилия, а не сжимающие.
Направления вращений кривошипа и шатуна противоположны. При вращении кривошипа против часовой стрелки шатун вращается по часовой стрелке. [3]
