- •1.Содержание дисциплины “Теория механизмов и машин” и ее значение для образования
- •2. Связь теории механизмов и машин с другими областями знаний.
- •3.Что такое механизм?
- •4 Что такое машина?
- •5.Как подразделяются машины по назначению и области использования?
- •6.Основные виды механизмов, используемых в современном машиностроении?
- •7.Строение механизмов. Определение звена, кинематической пары, кинематической цепи.
- •8 .Звенья механизма и их классификация
- •9.Кинематические пары и их классификация.
- •11. Как определяется число степеней свободы пространственного и плоского механизма?
- •12. Кинематические цепи и их классификация.
- •13 Принцип образования механизмов по Ассуру.
- •14. Как определяется класс механизма?
- •15. Структурный анализ механизмов. Цель и задачи структурного анализа.
- •16. Определение степени свободы механизма
- •17. Группы Ассура, их классификация.
- •18. Формула строения механизма, его класс и порядок.
- •19. Избыточные связи и "лишние" степени свободы
- •20 Группа Ассура как статически определимая система
- •Раздел 2
- •1. Цели, задачи и методы кинематического анализа рычажных механизмов.
- •2.Планы скоростей для плоских механизмов.
- •3. План ускорений для плоских механизмов
- •4.Определение линейной скорости и линейного ускорения любой точки, лежащей на звене.
- •5.Определение угловой скорости и углового ускорения звена, совершающего сложное движение.
- •6. Передаточные отношения механизмов с неподвижными осями валов
- •7. Виды зубчатых механизмов
- •8. Графоаналитический метод определения кинематических параметров: планы скоростей и ускорений.
- •9. Аналитический метод кинематического исследования
- •10. Передаточное отношение планетарного зубчатого механизма.
- •11. Многозвенные механизмы с неподвижными осями валов и
- •13. Определение передаточного отношения планетарного механизма построением картины линейных и угловых скоростей.
- •16. Цель, задачи и принципы силового расчета
- •18. Силовой расчет механизмов: основные допущения, принципы и порядок силового расчета
- •19. Классификация сил. Внешние и внутренние силы. Определение сил инерции звеньев.
- •20 Метод замкнутых векторных контуров заключается в следующем:
- •21.Графический метод силового расчета (метод планов сил).
- •22.Крайние «мертвые» положения механизма.
- •24. Определение реакций в кинематических парах, порядок их расчета.
- •25. Определение реакции в промежуточном шарнире
- •27.Задачи динамического анализа механизма
- •28. Динамический анализ рычажных механизмов. Цели и задачи.
- •29. Режимы движения машины
- •30.Установившееся движение машинного агрегата. Неравномерность движения
- •31. Динамическая модель механизма
- •32. Уравнение движения механизма и звена динамической модели в форме интеграла энергии и форме моментов (энергетическая и дифференциальная формы).
- •33.Механический коффициент полезного действия
- •35.Уравнение движения механизма в дифференциальном виде
- •Раздел 3.1. Эвольвентное зубчатое колесо: основные параметры.
- •2. Основная теорема плоского зацепления
- •4. Модуль зубчатого колеса.
- •7. Методы нарезания эвольвентных зубчатых колёс.
- •8. Исходный, производящий контур режущего инструмента.
- •9.Цели смещения исходного производящего контура инструмента.
- •10. Качественные показатели работы зубчатых передач. Влияние смещения исходного производящего контура инструмента на качественные показатели работы зубчатого зацепления.
- •11. Дополнительные условия при синтезе эвольвентного,
- •12.Синтез планетарных зубчатых механизмов.
- •13.Ограничительные условия при синтезе планетарных механизмов
- •14.Назначение и виды кулачковых механизмов
- •15.Этапы синтеза кулачкового механизма
- •16.Угол давления в кулачковом механизме.
- •17.Метод графического интегрирования при синтезе кулачковых механизмов
- •18 Построение профиля кулачка.
- •19, Выбор радиуса ролика (скругления рабочего участка толкателя).
- •20 Общие методы синтеза механизмов
- •22 Условие существования кривошипа
- •23. Проектирование механизма по заданным положениям звеньев
- •24Проектирование механизма по заданному коэффициенту изменения средней скорости выходного звена
11. Дополнительные условия при синтезе эвольвентного,
зацепления.
Из многих дополнительных условий синтеза (ограничений) рассмотрим три условия: отсутствие заострения зубьев, отсутствие интерференции зубьев и обеспечение непрерывного взаимодействия зубьев.
Условие непрерывности взаимодействия зубьев состоит в том, что вторая пара взаимодействующих зубьев должна войти в зацепление прежде, чем выйдет из
перекрытия для колеса 2 к его угловому шагу.
Заострение зуба получается, если точка пересечения двух симметричных профилей располагается вблизи окружности вершин зубьев, и толщина зуба по этой окружности получается менее некоторой величины, например (рис. 4.15). Для устранения заострения зуба можно уменьшить радиус окружности вершин или изменить коэффициенты смещения.
Интерференцией (наложением) зубьев называется явление, состоящее в том, что при рассмотрении теоретической картины зацепления часть пространства оказывается одновременно занятой двумя зубьями разных колес.
12.Синтез планетарных зубчатых механизмов.
На практике в качестве механизмов с двумя подвижностями наиболее часто применяются планетарные зубчатые механизмы или как их еще называют планетарные дифференциалы. Это название справедливо для механизмов, в которых входной энергетический поток разделяется на два выходных потока. Если входные энергетические потоки суммируются на выходе в один выходной поток, то такие механизмы следует называть суммирующими или интегральными.
Все рассмотренные типовые схемы механизмов можно выполнить с двумя подвижностями. Рассмотрим в качестве примера двухрядный механизм с одним внешним и одним внутренним зацеплением
По формуле Виллиса отношение угловых скоростей звеньев для внешнего зацепления колес z2 и z1 (w1 - wh) / (w2 - wh) = - z2 / z1
для внутреннего зацепления колес z4 и z3 (w2 - wh) / (w3 - wh) = z4 / z3 .
Перемножим, правые и левые части этих уравнений, и получим соотношение между угловыми скоростями механизма с двумя подвижностями [(w1 - wh) / (w2 - wh)] [(w2-wh)/ (w3-wh)] = - z2 z4 / ( z1 z3) (w1 - wh) / (w3 - wh) = - z2 z4 / ( z1 z3) = u13(h) u13 (h) w3 - u13 (h) wh = w1 - wh
w1 - ( 1 + u13 (h)) wh - u13 (h) w3 = 0 |
Чтобы из механизма с двумя подвижностями получить одноподвижный механизм необходимо либо остановить одно из подвижных звеньев, либо связать между собой функционально ( например, простой зубчатой передачей ) два подвижных звена. Механизмы, образованные по второму способу, называются замкнутыми дифференциалами.
13.Ограничительные условия при синтезе планетарных механизмов
При кинематическом синтезе многосателлитной планетарной передачи, конструируемой по заданной схеме, решают задачи подбора таких чисел зубьев ее колес, которые будут удовлетворять условиям: выполнения заданного передаточного отношения, правильности зацепления зубьев колес, соосности входного и выходного валов, соседства и сборки. Первые три условия являются общими при синтезе любой планетарной зубчатой передачи. Остальные диктуются особенностями кинематических схем планетарных механизмов. При синтезе планетарного механизма необходимо учитывать основные механические показатели качества: 1) КПД; 2) минимальные габаритные размеры; 3) массу проектируемого механизма;
4) динамические нагрузки в зацеплениях колес механизма, которые снижаются при выполнении следующих требований: а) числа зубьев центральных колес и числа сателлитов должны быть взаимно простыми; б) числа зубьев сопряженных колес не должны иметь общих множителей [4]. При проектировании планетарного механизма силового привода необходимо оценивать его КПД до подбора чисел зубьев. В учебной практике можно воспользоваться рекомендациями табл. 3 или аналитическими зависимостями, приведенными в работе [4, с.79].Требования к габаритным размерам планетарного механизма обычно сводятся к тому, чтобы они не превышали заданных. Масса механизма зависит от многих факторов, однако в данном пособии учитывается только один из них; сумма чисел зубьев Sвсех колес механизма. Эту характеристику в дальнейшем и будем принимать за критерий оценки массы. Предположим, что схема механизма с учетом КПД выбрана, передаточное отношение и число сателлитов заданы. Все колеса имеют одинаковый модуль, который либо задан в исходных данных, либо может быть определен по формуле
где M1 - крутящий момент на входном звене; z1 - число зубьев центрального колеса; k - число сателлитов планетарного механизма. В этом случае проектирование сводится к подбору чисел зубьев колес.
