- •1.Содержание дисциплины “Теория механизмов и машин” и ее значение для образования
- •2. Связь теории механизмов и машин с другими областями знаний.
- •3.Что такое механизм?
- •4 Что такое машина?
- •5.Как подразделяются машины по назначению и области использования?
- •6.Основные виды механизмов, используемых в современном машиностроении?
- •7.Строение механизмов. Определение звена, кинематической пары, кинематической цепи.
- •8 .Звенья механизма и их классификация
- •9.Кинематические пары и их классификация.
- •11. Как определяется число степеней свободы пространственного и плоского механизма?
- •12. Кинематические цепи и их классификация.
- •13 Принцип образования механизмов по Ассуру.
- •14. Как определяется класс механизма?
- •15. Структурный анализ механизмов. Цель и задачи структурного анализа.
- •16. Определение степени свободы механизма
- •17. Группы Ассура, их классификация.
- •18. Формула строения механизма, его класс и порядок.
- •19. Избыточные связи и "лишние" степени свободы
- •20 Группа Ассура как статически определимая система
- •Раздел 2
- •1. Цели, задачи и методы кинематического анализа рычажных механизмов.
- •2.Планы скоростей для плоских механизмов.
- •3. План ускорений для плоских механизмов
- •4.Определение линейной скорости и линейного ускорения любой точки, лежащей на звене.
- •5.Определение угловой скорости и углового ускорения звена, совершающего сложное движение.
- •6. Передаточные отношения механизмов с неподвижными осями валов
- •7. Виды зубчатых механизмов
- •8. Графоаналитический метод определения кинематических параметров: планы скоростей и ускорений.
- •9. Аналитический метод кинематического исследования
- •10. Передаточное отношение планетарного зубчатого механизма.
- •11. Многозвенные механизмы с неподвижными осями валов и
- •13. Определение передаточного отношения планетарного механизма построением картины линейных и угловых скоростей.
- •16. Цель, задачи и принципы силового расчета
- •18. Силовой расчет механизмов: основные допущения, принципы и порядок силового расчета
- •19. Классификация сил. Внешние и внутренние силы. Определение сил инерции звеньев.
- •20 Метод замкнутых векторных контуров заключается в следующем:
- •21.Графический метод силового расчета (метод планов сил).
- •22.Крайние «мертвые» положения механизма.
- •24. Определение реакций в кинематических парах, порядок их расчета.
- •25. Определение реакции в промежуточном шарнире
- •27.Задачи динамического анализа механизма
- •28. Динамический анализ рычажных механизмов. Цели и задачи.
- •29. Режимы движения машины
- •30.Установившееся движение машинного агрегата. Неравномерность движения
- •31. Динамическая модель механизма
- •32. Уравнение движения механизма и звена динамической модели в форме интеграла энергии и форме моментов (энергетическая и дифференциальная формы).
- •33.Механический коффициент полезного действия
- •35.Уравнение движения механизма в дифференциальном виде
- •Раздел 3.1. Эвольвентное зубчатое колесо: основные параметры.
- •2. Основная теорема плоского зацепления
- •4. Модуль зубчатого колеса.
- •7. Методы нарезания эвольвентных зубчатых колёс.
- •8. Исходный, производящий контур режущего инструмента.
- •9.Цели смещения исходного производящего контура инструмента.
- •10. Качественные показатели работы зубчатых передач. Влияние смещения исходного производящего контура инструмента на качественные показатели работы зубчатого зацепления.
- •11. Дополнительные условия при синтезе эвольвентного,
- •12.Синтез планетарных зубчатых механизмов.
- •13.Ограничительные условия при синтезе планетарных механизмов
- •14.Назначение и виды кулачковых механизмов
- •15.Этапы синтеза кулачкового механизма
- •16.Угол давления в кулачковом механизме.
- •17.Метод графического интегрирования при синтезе кулачковых механизмов
- •18 Построение профиля кулачка.
- •19, Выбор радиуса ролика (скругления рабочего участка толкателя).
- •20 Общие методы синтеза механизмов
- •22 Условие существования кривошипа
- •23. Проектирование механизма по заданным положениям звеньев
- •24Проектирование механизма по заданному коэффициенту изменения средней скорости выходного звена
33.Механический коффициент полезного действия
Энергия, потребляемая машиной, расходуется на преодоление полезных и вредных сопротивлений. Полезные – это сопротивления, для преодоления которых машина предназначается. Вредные – это сопротивления, преодоление которых не даёт производственного эффекта.
Механическим
КПД (
)
называется отношение полезной работы
или
мощности
к
затраченной
(
).
Потери механической энергии в разного
рода устройствах состоят главным образом
из потерь на трение:
,
где
-
коэффициент потерь.
При
холостом ходе машины
,
но могут быть случаи когда
,
что означает невозможность совершать
движение из-за явления,
называемого самоторможением.
35.Уравнение движения механизма в дифференциальном виде
Содержит вторые производные от координат по времени. Изменение кинетической энергии механизма равно приращению работ сил действующих на механизм:
.
В случае если начальное звено совершает вращательное движение:
.
Тогда:
,
,
Преобразуем второе слагаемое с учетом:
.
Подставляя получаем:
.
В
случае если Jпр
= const
(маховое колесо, ротор двигателя и т.п.)
получаем
(второй закон Ньютона для вращательного
движения).
Если начальное звено совершает поступательное движение получаем:
.
В
случае если mпр
= const
получаем
.
36. Режимы движения машины. В зависимости от того какую работу совершают внешние силы за цикл движения машины различают три режима движения: разгон, торможение и установившееся движение. Циклом называют период времени или период изменения обобщенной координаты через который все параметры системы принимают первоначальные значения. Существует большое количество машин и механизмов: гидроподъемники, манипуляторы, механизмы управления метательными аппаратами, механизмы шасси, механизмы автоматических дверей и многие другие, исполнительное звено которых перемещается из начального положения в конечное. При этом в начале и в конце цикла движения исполнительное звено неподвижно. Такой режим движения механизма называется режимом «пуск-останов». Механизм начинает движение из состояния покоя, в конце цикла выходное звено механизма должно остановиться и зафиксироваться в заданном положении. Возможны три варианта остановки выходного звена: остановка с жестким ударом (рис.7.2) w1n > 0, e1nÞ ¥ ; остановка с мягким ударом (рис. 7.3 ) w1n = 0, e1n ¹ 0 . В отличие от установившегося режима движения режимы разгона и торможения называются неустановившимися. К этому режиму относят и режим движения «пуск-останов». Прямая задача динамики: определение закона движения машины при заданных внешних силовых воздействиях ( как сил и моментов сопротивления, так и движущих или управляющих сил ). Эта задача относится к задачам анализа, при которых параметры механизмов заданы, либо могут быть определены на предварительных этапах расчета. Для простоты и наглядности рассмотрим алгоритм решения этой задачи на примере конкретного механизма гидроподъемника. По условиям функционирования гидроподъемник за цикл движения должен переместить платформу 1 (рис. 7.6) на угол Dj1 и зафиксировать ее в конечном положении. При этом силы сопротивления определяются силами веса платформы и звеньев гидроцилиндра, движущие силы - давлением жидкости в цилиндре.
