
- •1.Содержание дисциплины “Теория механизмов и машин” и ее значение для образования
- •2. Связь теории механизмов и машин с другими областями знаний.
- •3.Что такое механизм?
- •4 Что такое машина?
- •5.Как подразделяются машины по назначению и области использования?
- •6.Основные виды механизмов, используемых в современном машиностроении?
- •7.Строение механизмов. Определение звена, кинематической пары, кинематической цепи.
- •8 .Звенья механизма и их классификация
- •9.Кинематические пары и их классификация.
- •11. Как определяется число степеней свободы пространственного и плоского механизма?
- •12. Кинематические цепи и их классификация.
- •13 Принцип образования механизмов по Ассуру.
- •14. Как определяется класс механизма?
- •15. Структурный анализ механизмов. Цель и задачи структурного анализа.
- •16. Определение степени свободы механизма
- •17. Группы Ассура, их классификация.
- •18. Формула строения механизма, его класс и порядок.
- •19. Избыточные связи и "лишние" степени свободы
- •20 Группа Ассура как статически определимая система
- •Раздел 2
- •1. Цели, задачи и методы кинематического анализа рычажных механизмов.
- •2.Планы скоростей для плоских механизмов.
- •3. План ускорений для плоских механизмов
- •4.Определение линейной скорости и линейного ускорения любой точки, лежащей на звене.
- •5.Определение угловой скорости и углового ускорения звена, совершающего сложное движение.
- •6. Передаточные отношения механизмов с неподвижными осями валов
- •7. Виды зубчатых механизмов
- •8. Графоаналитический метод определения кинематических параметров: планы скоростей и ускорений.
- •9. Аналитический метод кинематического исследования
- •10. Передаточное отношение планетарного зубчатого механизма.
- •11. Многозвенные механизмы с неподвижными осями валов и
- •13. Определение передаточного отношения планетарного механизма построением картины линейных и угловых скоростей.
- •16. Цель, задачи и принципы силового расчета
- •18. Силовой расчет механизмов: основные допущения, принципы и порядок силового расчета
- •19. Классификация сил. Внешние и внутренние силы. Определение сил инерции звеньев.
- •20 Метод замкнутых векторных контуров заключается в следующем:
- •21.Графический метод силового расчета (метод планов сил).
- •22.Крайние «мертвые» положения механизма.
- •24. Определение реакций в кинематических парах, порядок их расчета.
- •25. Определение реакции в промежуточном шарнире
- •27.Задачи динамического анализа механизма
- •28. Динамический анализ рычажных механизмов. Цели и задачи.
- •29. Режимы движения машины
- •30.Установившееся движение машинного агрегата. Неравномерность движения
- •31. Динамическая модель механизма
- •32. Уравнение движения механизма и звена динамической модели в форме интеграла энергии и форме моментов (энергетическая и дифференциальная формы).
- •33.Механический коффициент полезного действия
- •35.Уравнение движения механизма в дифференциальном виде
- •Раздел 3.1. Эвольвентное зубчатое колесо: основные параметры.
- •2. Основная теорема плоского зацепления
- •4. Модуль зубчатого колеса.
- •7. Методы нарезания эвольвентных зубчатых колёс.
- •8. Исходный, производящий контур режущего инструмента.
- •9.Цели смещения исходного производящего контура инструмента.
- •10. Качественные показатели работы зубчатых передач. Влияние смещения исходного производящего контура инструмента на качественные показатели работы зубчатого зацепления.
- •11. Дополнительные условия при синтезе эвольвентного,
- •12.Синтез планетарных зубчатых механизмов.
- •13.Ограничительные условия при синтезе планетарных механизмов
- •14.Назначение и виды кулачковых механизмов
- •15.Этапы синтеза кулачкового механизма
- •16.Угол давления в кулачковом механизме.
- •17.Метод графического интегрирования при синтезе кулачковых механизмов
- •18 Построение профиля кулачка.
- •19, Выбор радиуса ролика (скругления рабочего участка толкателя).
- •20 Общие методы синтеза механизмов
- •22 Условие существования кривошипа
- •23. Проектирование механизма по заданным положениям звеньев
- •24Проектирование механизма по заданному коэффициенту изменения средней скорости выходного звена
25. Определение реакции в промежуточном шарнире
Для определения в группе Ассура 2-3 реакции R23 звена 2 на звено 3 необходимо:
1
)выписать
уравение равновесия сил для звена 3
В
этом уравнении единственной неизвестной
является сила R23.
Поэтому на плане сил, построенном ранее
соединяем отрезок между силами R43
и
по
правилу силового треугольника .
2) выписать уравнения равновесия сил для звена 2
Отсюда
тем же методом находим
.
и
на
плане сил будет одним и тем же отрезком.
26.Принцип Даламбера, силы и моменты сил инерции (пример их определения).
Метод кинетостатики основан на принципе Даламбера: если ко всем внешним силам, действующим на звенья механизма, добавить силы инерции и моменты сил инерции, то данный механизм будет находиться в состоянии статического равновесия. То есть это искусственный прием, приводящий неравновесную систему в состояние равновесия.
Силы инерции и моменты сил инерции возникают при изменении скорости движения звеньев. Силы инерции препятствуют движению при ускорении и способствуют ему при замедлении. Формулы для определения:
силы инерции звена
Fui=-mi⋅asi;
момента сил инерции
Mui=-Isi⋅εi
где
mi – масса звена;
Isi – центральный момент инерции;
asi – ускорение центра масс звена.
Знак «-» показывает, что вектор Fui направлен против вектора ускорения asi (определяют из плана ускорений), а Mui – против углового ускорения i - го звена.
27.Задачи динамического анализа механизма
Основными задачами динамики механизмов являются:
1) определение сил, действующих в кинематических парах механизма;
2) определение сил трения и их влияние на работу механизма;
3) определение закона движения механизма, находящегося под действием определенных сил;
4) выявление условий, обеспечивающих заданный закон движения механизма;
5) уравновешивание механизмов.
Для решения первой задачи проводится силовое исследование механизма
28. Динамический анализ рычажных механизмов. Цели и задачи.
Задачи:
а) изучение влияния внеш.сил, сил веса звеньев, сил трения и массовых сил(инерции) на звенья механизма, на элементы звеньев, на кинематические пары, стойки и установление способов уменьшения динамических нагрузок, возникающих при движении
б) изучение режима движения механизма под действием заданных сил и установление способов, обеспечивающих заданные режимы движения механизмов
Цели:
1) определение внешних неизвестных сил, действующих на звенья механизма, а также реакций, возникающих в кинематических парах при движении механизма
2) определение мощности, необходимой для воспроизведения заданного движения механизма и изучение законов распределения мощности на выполнение работ
29. Режимы движения машины
Работу машины можно разбить на 3 периода:
- период разбега; период установившегося движения; период выбега;
Аналитическая зависимость между действующими на звенья силами и кинематическими параметрами движения называется уравнением движения. Это уравнение в общем случае имеет вид ∆Т=Ад-Ас, где ∆Т=Т-Т0 – изменение кинетической энергии за рассматриваемый промежуток времени (Т и Т0 – величина кинетической энергии в конце и начале промежутка);
Ад-Ас – суммарная работа действующих сил за рассматриваемый промежуток (Ад, Ас – работа движущих сил и сил сопротивления).
В период разбега Ад-Ас=∆Т>0, т.е. происходит ускорение движения звеньев, являющегося неустановившемся.
В период установившегося движения Ад-Ас=∆Т=0, т.е. скорости звеньев в конечный и начальный моменты цикла равны и вся работа движущихся сил расходуется на преодоление сопротивлений.
В период выбега Ад-Ас=∆Т<0, движение продолжается некоторое время за счет накопленной кинетической энергии, поглощаемой за счет сопротивления движению.