
- •Введение
- •Глава 1
- •Глава 2
- •2.1. Количественные натуральные числа. Счет. Взаимосвязь количественных и порядковых чисел. Цифра
- •2.2. Отрезок натурального ряда. Присчитывание и отсчитывание по 1
- •2.3. Сравнение чисел
- •2.4. Смысл действий сложения и вычитания
- •2.5. Число и цифра 0
- •2.6. Переместительное свойство сложения
- •2.7. Взаимосвязь компонентов и результатов действий сложения и вычитания
- •2.8. Таблица сложения (вычитания) в пределах 10
- •2.9. Десятичная система счисления. Нумерация чисел
- •2.10. Число как результат измерения величин
- •2.11. Таблица сложения однозначных чисел (с переходом через десяток)
- •2.12. Приемы устного сложения и вычитания чисел
- •3 Истомина н.Б. 65
- •1 Бантова м.А. Бельтюкова г.В. Методика преподавания математики в начальных классах. - м., Просвещение, 1984, с. 77.
- •2.14. Переместительное свойство умножения
- •2.15. Смысл действия деления
- •2.17. Сочетательное свойство умножения
- •2.22. Деление с остатком
- •2.23. Алгоритмы письменного сложения и вычитания
- •2.25. Алгоритм письменного деления
- •2.27. Уравнение
- •Глава 3
- •3.1. Что такое развивающее обучение?
- •3.2. Анализ и синтез
- •3.3. Прием сравнения
- •3.5. Прием аналогии
- •3.6. Прием обобщения
- •3.7. Способы обоснования истинности суждений
- •3.8. Взаимосвязь логического и алгоритмического мышления школьников
- •4.2. Различные методические подходы к формированию умения решать задачи
- •4.3. Методические приемы обучения младших школьников решению задач
- •4.4. Организация деятельности учащихся при
- •1 Бантова м.А., Бельтюкова г.В. Методика преподавания математики в начальных классах. - м., Просвещение, 1984, с. 234.
- •Глава 5
- •5.1. Различные подходы к построению урока математики
- •5.2. Общий способ деятельности учителя при планировании урока
- •5.3. Методический анализ урока математики
- •1 Класс», 4-е издание, исправленное и дополненное. - м.,1996.
- •2 Класс»,. 3-е издание, исправленное и дополненное. - м., 1996.
- •3 Класс». -м.,1995.
- •Глава 6
- •6.2. Роль психологических и дидактических исследований в развитии методики начального обучения
- •6.3. Научно-исследовательская работа студентов в процессе изучения курса «Методика обучения математике»
- •Список литературы, рекомендуемой для изучения
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
2.27. Уравнение
В курсе математики начальных классов уравнение рассматривается как истинное равенство, содержащее неизвестное число, и решается на основе правила взаимосвязи между компонентами и результатами действий.
Термин «решение» употребляется в двух смыслах: он обозначает как число (корень), при подстановке которого уравнение обращается в верное числовое равенство, так и сам процесс отыскания такого числа, т. е. способ решения уравнения.
Ответ на вопрос - когда целесообразно знакомить младших школьников с уравнением - в первом, во втором или третьем классе, неоднозначен.
Одна точка зрения - познакомить с уравнениями как можно раньше и в процессе их решения осуществлять работу по усвоению детьми правил о взаимосвязи компонентов и результатов действий.
Другая точка зрения - приступать к решению уравнений после того, как учащиеся усвоят необходимую терминологию и те правила, которыми они будут пользоваться для решения уравнений.
146
147
В противном случае при решении уравнений мы вынуждены идти через образец и большое количество тренировочных однообразных упражнений. Это приводит к тому, что, решая уравнения, учащиеся часто руководствуются не общим способом действия (правилом), а внешними признаками.
Например, предложив детям решить уравнение - 8 + х = 6, мы довольно часто получаем ответ: х = 8 - 6, который учащиеся обосновывают так: «Здесь знак +, значит, надо вычитать, я из большего числа вычитаю меньшее». Ясно, что дети ориентируются не на существенные признаки данного равенства, а на числа 8 и 6. А так как младший школьник может вычитать только меньшее число из большего, то он и оценивает данное равенство с этой точки зрения, не пытаясь осознать ту взаимосвязь, которая существует между слагаемыми и значением суммы.
11 Задание 76. Найдите в учебниках М2М и М2И страницы, где учащиеся знакомятся с уравнениями. Сравните задания, предложенные в одном и другом учебниках. В чем их различия?
Более позднее изучение уравнений позволяет:
1. Использовать в уравнениях многозначные числа и ранее изу ченные понятия:
▼ Запиши каждое предложение уравнением и реши его. а)Неизвестное число уменьшили на 708 и получили 1200.
б) Число 1208 уменьшили в несколько раз и получили 302.
в) Неизвестное число увеличили в 7 раз и получили 1449
2. Познакомить учащихся с уравнениями, в которых неизвест ный компонент представлен в виде буквенного выражения:
а) 5л--10 = 290 б)5.(х-10) = 290 в) (10838 -х): 342 = 31 г)150-*:2 = 140
3. Познакомить учащихся с решением задач способом состав ления уравнений.
При этом можно использовать задачи, которые учащиеся уже решали арифметическим способом.
Для этой цели предлагаются такие задания:
148