
- •1 Аналоговые и дискретные сигналы.
- •2 Модель канала связи с аддитивным шумом.
- •1 Беспроводные радиоканалы.
- •2. Помехи в каналах.
- •3. Какие функции выполняют кодеры и декодеры?
- •1. Коды Малера.
- •2. Сжатие данных.
- •1. Коды Рой-Чаудхури, Гоппа.
- •2. Алгоритмы цифрового кодирования.
- •1. Код Хаффмана.
- •2. Демодуляция и обнаружение цифровых сигналов.
- •1. Кодеры и декодеры.
- •2. Проводные и волоконно-оптические каналы связи.
- •1. Коды Малера, Рида, Соломона, Рой-Чаудхури, Гоппа.
- •2. Импульсно-кодовая модуляция.
- •3. Основные параметры сигналов: длительность, ширина спектра и динамический диапазон. Примеры: речевые (телефонные), вещательные, телевизионные, телеграфные сигналы, сигналы передачи данных.
- •1. Каналы связи и их характеристики.
- •2. Цифровые системы передачи.
- •3. Схема организации цифровой телефонной связи.
- •1. Кодеры и декодеры.
- •2. Проводные и волоконно-оптические каналы связи.
- •1. Линейные двоичные коды для обнаружения и исправления ошибок.
- •2. Ацп последовательного счета.
- •1. Методы декодирования корректирующих кодов.
- •2. Теорема Котельникова.
- •1. Многопозиционная модуляция.
- •2. Коды Хемминга.
- •1. Модель Гильберта.
- •2. Алгоритм декодирования Витерби.
- •3. Основные параметры сигналов.
- •1. Методы уплотнения.
- •2. Методы повышения верности передачи информации.
- •3. Частотная модуляция, способы получения чм колебаний.
- •Псевдотроичный метод кодирования.
- •2. Схема параллельного аналого-цифрового преобразователя.
- •1. Проводные и волоконно-оптические каналы связи.
- •2. Коды с гарантированным обнаружением и исправлением ошибок.
- •1. Принцип преобразования неподвижного изображения в электрический сигнал.
- •2. Регистры памяти.
- •3. Цифровые виды модуляции.
- •1. Преобразование звукового сигнала в цифровой сигнал.
- •2. Схема организации телеграфной связи.
- •Фазовая модуляция в цифровой системе связи.
- •1. Работы Хартли и Винера.
- •2. Мажоритарное декодирование.
- •3. Как называется канал связи, в котором действует аддитивная помеха типа «белого шума» с нормальным законом распределения мгновенных значений?
- •Регистры сдвига.
- •2. Шифраторы и дешифраторы.
- •3. Циклические коды, их свойства и математическое представление.
- •1. Схема цифровой системы связи.
- •2. Коды Соломона.
- •3. Если сигнал и шум независимые случайные процессы, то в каком канале связи дисперсии сигнала и шума складываются.
- •1. Телеграф Морзе.
- •2. Корреляционный приемник. Методы декодирования корректирующих кодов.
- •3. Какая из помех перемножается с сигналом.
- •Теория Найквиста.
- •2. Цифровые модуляции.
- •1. Цифровой согласованный фильтр.
- •2. Теорема Шеннона.
- •1. Циклические коды.
- •2. Методы цифровой полосовой модуляции.
- •1. Узкополосная передача.
- •2. Блочные корректирующие коды.
- •3. Что такое дисперсия случайного процесса?
2. Помехи в каналах.
Помехи заранее неизвестны и поэтому не могут быть полностью устранены. Они весьма разнообразны как по своему происхождению, так и по физическим свойствам. Можно дать следующую классификацию помех по месту их возникновения:
атмосферные помехи;
промышленные помехи (индустриальные помехи);
космические помехи;
электризационные помехи;
помехи посторонних каналов связи;
внутренние шумы.
Атмосферные помехи обусловлены электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области ДВ и СВ.
Промышленные помехи возникают из-за резких изменений тока в электрических цепях всевозможных электроустановок. К ним относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т.д.
Космические помехи создаются радиоизлучением внеземных источников. Они создают общий шумовой фон и в наибольшей степени проявляются на ультракоротких волнах.
Электризационные помехи, часто возникающие во время пурги или песчаной бури, создаются наэлектризованными снежными частицами или песчинками. Эти помехи возникают при скорости ветра свыше 5,5 м/с и ощутимы на частотах ниже 15 МГц.
Помехи посторонних каналов связи – обусловлены работой посторонних радиостанций. С учетом источника происхождения их называют также стационарными. Этот вид помех наиболее характерен для КВ диапазоне.
В зависимости от характера изменения во времени различают флуктуационные, импульсные (сосредоточенные во времени) и узкополосные (сосредоточенные по спектру) помехи.
Флуктуационная помеха представляет собой непрерывное колебание, меняющееся случайным образом. Часто она описывается нормальным законом распределения. Быстрое изменение во времени позволяет заменить реальные флюктуационные помехи так называемым белым шумом - процессом с постоянным спектром.
Импульсные помехи представляет собой случайную последовательность коротких сигналов обычно следующих редко, что реакция приемника на текущий импульс успевает уменьшится до нуля к моменту появления очередного импульса. Типичными примерами таких помех являются сигналы, создаваемые разрядами молний или искрением контактов в электрических двигателях.
3. Какие функции выполняют кодеры и декодеры?
Кодирующие устройства серии HCS имеют небольшой массив EEPROM-памяти, который должен быть загружен несколькими параметрами перед использованием.
Наиболее важный из этих величин:
кодирующий ключ, который генерируется;
16-битовое число в счетчике синхронизации;
28-битовый серийный номер, который, как предполагается, является уникальным для каждого кодера.
Изготовитель программирует серийный номер для каждого кодера во время продукции, в то время как «Алгоритм генерирования ключа» генерирует кодирующий ключ (рис. 1а).
Исходные данные к алгоритму генерирования ключа включают в себя серийный номер кодера и 64-битного код изготовителя, который создается во время изготовления.
Обратите внимание: код изготовителя – самая важная часть секретности системы. Следовательно по отношению к этому коду должны приниматься все возможные предосторожности.
Счетчик синхронизации с 16-битным основанием служит для модификации передаваемого кода, при каждой передаче и обновляется каждый раз по нажатию кнопки.
Благодаря сложности алгоритма шифрования KEELOQ, изменение в одном бите величины счетчика синхронизации приводит к большим изменениям в передаваемом коде.
Принцип работы декодера
Прежде, чем передатчик и приемник смогут работать вместе, приемник должен сначала обучиться и сохранять некоторую информацию из передатчика.
Эта информация включает контрольную сумму серийного номера, кодирования ключ, и текущую величину счетчика синхронизации.
Когда сообщение верного формата обнаружено, приемник сначала сравнивает серийный номер.
Если контрольная сумма серийного номера соответствует запомненному ранее передатчику, сообщение дешифруется.
Затем, приемник проверяет расшифрованную величину счетчика синхронизации сравнивая ее с тем, что сохранено в памяти. Если величина счетчика синхронизации удовлетворяет, то допустимое сообщение принимается. Рис. 4 показывает связь между некоторыми из величин, сохраняемых приемником и величинами, полученными от передатчика.