
- •1 Аналоговые и дискретные сигналы.
- •2 Модель канала связи с аддитивным шумом.
- •1 Беспроводные радиоканалы.
- •2. Помехи в каналах.
- •3. Какие функции выполняют кодеры и декодеры?
- •1. Коды Малера.
- •2. Сжатие данных.
- •1. Коды Рой-Чаудхури, Гоппа.
- •2. Алгоритмы цифрового кодирования.
- •1. Код Хаффмана.
- •2. Демодуляция и обнаружение цифровых сигналов.
- •1. Кодеры и декодеры.
- •2. Проводные и волоконно-оптические каналы связи.
- •1. Коды Малера, Рида, Соломона, Рой-Чаудхури, Гоппа.
- •2. Импульсно-кодовая модуляция.
- •3. Основные параметры сигналов: длительность, ширина спектра и динамический диапазон. Примеры: речевые (телефонные), вещательные, телевизионные, телеграфные сигналы, сигналы передачи данных.
- •1. Каналы связи и их характеристики.
- •2. Цифровые системы передачи.
- •3. Схема организации цифровой телефонной связи.
- •1. Кодеры и декодеры.
- •2. Проводные и волоконно-оптические каналы связи.
- •1. Линейные двоичные коды для обнаружения и исправления ошибок.
- •2. Ацп последовательного счета.
- •1. Методы декодирования корректирующих кодов.
- •2. Теорема Котельникова.
- •1. Многопозиционная модуляция.
- •2. Коды Хемминга.
- •1. Модель Гильберта.
- •2. Алгоритм декодирования Витерби.
- •3. Основные параметры сигналов.
- •1. Методы уплотнения.
- •2. Методы повышения верности передачи информации.
- •3. Частотная модуляция, способы получения чм колебаний.
- •Псевдотроичный метод кодирования.
- •2. Схема параллельного аналого-цифрового преобразователя.
- •1. Проводные и волоконно-оптические каналы связи.
- •2. Коды с гарантированным обнаружением и исправлением ошибок.
- •1. Принцип преобразования неподвижного изображения в электрический сигнал.
- •2. Регистры памяти.
- •3. Цифровые виды модуляции.
- •1. Преобразование звукового сигнала в цифровой сигнал.
- •2. Схема организации телеграфной связи.
- •Фазовая модуляция в цифровой системе связи.
- •1. Работы Хартли и Винера.
- •2. Мажоритарное декодирование.
- •3. Как называется канал связи, в котором действует аддитивная помеха типа «белого шума» с нормальным законом распределения мгновенных значений?
- •Регистры сдвига.
- •2. Шифраторы и дешифраторы.
- •3. Циклические коды, их свойства и математическое представление.
- •1. Схема цифровой системы связи.
- •2. Коды Соломона.
- •3. Если сигнал и шум независимые случайные процессы, то в каком канале связи дисперсии сигнала и шума складываются.
- •1. Телеграф Морзе.
- •2. Корреляционный приемник. Методы декодирования корректирующих кодов.
- •3. Какая из помех перемножается с сигналом.
- •Теория Найквиста.
- •2. Цифровые модуляции.
- •1. Цифровой согласованный фильтр.
- •2. Теорема Шеннона.
- •1. Циклические коды.
- •2. Методы цифровой полосовой модуляции.
- •1. Узкополосная передача.
- •2. Блочные корректирующие коды.
- •3. Что такое дисперсия случайного процесса?
2. Цифровые модуляции.
Практически во всех современных системах связи с подвижными объектами используются методы цифровой модуляции и цифровая обработка сигналов при демодуляции. Такие системы принято называть цифровыми системами передачи в отличие от аналоговых систем, в которых реализованы аналоговая модуляция и аналоговая демодуляция. Современные достижения радиоэлектроники обеспечивают возможность реализовать б передатчике и приемнике системы связи достаточно сложные алгоритмы цифровой обработки электрических сигналов. В результате качество передачи практически любых сообщений в цифровых системах оказывается выше, чем качество передачи этих сообщений с помощью аналоговых систем связи. Например, оказалось возможным передавать сообщения в присутствии шума и помех с большей точностью или передавать больше сообщений при прочих равных условиях. Цифровые системы передачи обладают двумя важнейшими особенностями: • любые сообщения представляются в цифровой форме, т.е. в виде последовательностей битов {aj, j = ...,-1,0,+1,...}; при любом значении индекса j символ аj принимает значения из алфавита {0, 1}; • передатчик системы формирует и передает по очереди в канал передачи конечное число сигналов {sm(t)> m = 1, 2,..., М}, различающихся по форме, которые принято называть канальными символами; для длительности канального символа примем обозначение Ткс; один канальный символ «переносит» один бит или большее число битов, подлежащих передаче; если М = 2, то систему передачи называют двоичной; если М > 2 , то систему называют М-ичной.
1. Цифровой согласованный фильтр.
Поскольку согласованный фильтр должен выдавать на выходе сигнал, совпадающий по форме с корреляционной функцией входного сигнала, то алгоритм обработки сигнала в этом случае можно построить по схеме рис.14.
Рис. 14
На
вход блока дискретного преобразования
Фурье подаются закодированные в цифровой
код отсчеты комплексной огибающей
дискретизированного радиосигнала
.
На его выходе образуется последовательность
спектральных коэффициентов
,
которая вместе с набором коэффициентов
комплексно-сопряженных известному
сигналу
поступает
на набор перемножителей, осуществляющих
перемножение каждого n-го числа.
На выходе блока обратного дискретного преобразования Фурье формируется последовательность отсчетов выходного сигнала, которые далее подвергаются обработке с целью выработки решения.
Достоинством цифровой согласованной фильтрации по сравнению с аналоговой является возможность реализации устройств с любыми характеристиками в пределах полосы частот, обеспечиваемой быстродействием АЦП и ЦАП. Все сводится к выбору весовых коэффициентов, при этом обеспечивается высокая точность и стабильность характеристик цифровых фильтров.
2. Теорема Шеннона.
Теорема Шеннона — Хартли в теории информации — применение теоремы кодирования канала с шумом к архетипичному случаю непрерывного временно́го аналогового канала коммуникаций, искажённого гауссовским шумом. Теорема устанавливает шенноновскую ёмкость канала, верхнюю границу максимального количества безошибочных цифровых данных (то есть, информации), которое может быть передано по такой связи коммуникации с указанной полосой пропускания в присутствии шумового вмешательства, согласно предположению, что мощность сигнала ограничена, и гауссовский шум характеризуется известной мощностью или мощностью спектральной плотности. Закон назван в честь Клода Шеннона и Ральфа Хартли.
Рассматривая все возможные многоуровневые и многофазные методы шифрования, теорема Шеннона — Хартли утверждает, что пропускная способность канала , означающая теоретическую верхнюю границу скорости передачи данных, которые можно передать с данной средней мощностью сигнала через аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности равна:
где
— пропускная способность канала, бит/с;
— полоса пропускания канала, Гц;
— полная мощность сигнала над полосой пропускания, Вт или В²;
— полная шумовая мощность над полосой пропускания, Вт или В²;
—
частное
от деления отношения
сигнала к его шуму (SNR) на
гауссовский шум, выраженное как отношение
мощностей.