Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Аналоговые и дискретные сигналы.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
477.84 Кб
Скачать
  1. Псевдотроичный метод кодирования.

При псевдотроичном методе прямоугольные импульсы короче тактового интервала (длительности передачи символа); например, имеют половинную длительность, и поэтому переходный процесс успевает затухнуть до того момента, когда посылается новый импульс.

Кодирование при псевдотроичном методе такое же, как и при биполярном методе, однако единица передается импульсом половинной длительности. Поэтому в американской литературе биполярный метод называют fullbaudedAMI -методом , а псевдотроичный - halfbaudedAMI-методом. Временная диаграмма показана на рис., а спектральная плотность мощности - на рисунке 5.2 (кривая 3).

Рисунок 5.2 - Графики, иллюстрирующие псевдотроичный метод

При одинаковом пиковом напряжении на передаче высота максимума спектральной плотности значительно меньше, чем при биполярном методе; поэтому помехи, создаваемые посторонними системами, меньше, а чувствительность к помехам, напротив, больше, чем при биполярном методе. В отношении остальных свойств оба метода равноценны.

2. Схема параллельного аналого-цифрового преобразователя.

Входной сигнал подается на инвертирующие входы компараторов (DA1-DA8), соединенные параллельно. На неинвертирующие входы этих компараторов подаются опорные напряжения с делителя напряжений на сопротивлениях R1-R9, на каждый компаратор подается опорное наряжение, отличающееся от соседних на шаг квантования. Количество включенных компараторов преобразуется в двоичный код при помощи приоритетного шифратора DD1

Достоинства

высокое быстродействие, достигающее десятков наносекунд.

Недостатки

большая сложность (количество компараторов в схеме равно числу уровней квантования, и равно 2nгде n - разрядность выходного кода

высокая стоимость - из-за высокой стоимости;

и, как следствие, невысокая точность (8-10 двоичных разрядов)

Особенности сопряжения с микропроцессорными системами

Поскольку АЦП даннаого типа, как правило, имеют быстродействие, большее чем микропорцессорная система, то приходится вначале записывать данные с выхода АЦП в быстродействующее буферное ОЗУ

1. Проводные и волоконно-оптические каналы связи.

Волоко́нно-опти́ческая связь — способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем — волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования, пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования: незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно. Волокно в каждый дом (англ. Fiber to the premises, FTTP или Fiber to the home, FTTH) — термин, используемый телекоммуникационными провайдерами, для обозначения широкополосных телекоммуникационных систем, базирующихся на проведении волоконного канала и его завершения на территории конечного пользователя путём установки терминального оптического оборудования для предоставления комплекса телекоммуникационных услуг, включающего:

высокоскоростной доступ в Интернет;

услуги телефонной связи;

услуги телевизионного приёма.

ПРОВОДНЫЕ В вычислительных сетях проводные линии связи могут быть медными и-или волоконно-оптическими линиями связи (ВОЛС). Особенности ВОЛС будут представлены в конце главы. Здесь рассмотрим характеристики медных соединений, к которым относятся коаксиальные кабели и пары проводов.

В ЛВС используются коаксиальные кабели двух видов: "толстый" (thick) диаметром 12,5 мм и "тонкий" (thin) диаметром 6,25 мм. "Толстый" кабель имеет меньшее затухание, лучшую помехозащищенность, что обеспечивает возможность работы на больших расстояниях, но он плохо гнется, что затрудняет прокладку соединений в помещениях, и дороже "тонкого".

Преимущственное применение находят витые пары проводов. Среди витых пар различают экранированные и неэкранированные пары, им соответствуют аббревиатуры STP (Shielded Twist Pair) и UTP (Unshielded Twist Pair). Экранированные пары сравнительно дороги, их используют реже. Неэкранированные пары подразделяют на несколько категорий (типов). Обычный телефонный кабель - пара категории 1. Пара категории 2 может использоваться в сетях с пропускной способностью до 4 Мбит/с. Для сетей Ethernet (точнее, для ее варианта с названием 10Base-T) была разработана пара категории 3, а для сетей Token Ring - пара категории 4. В высокосокростных каналах используют более совершенную витую пару категории 5, которая применима при частотах до 100 МГц на расстояниях в десятки метров. В паре категории 5 проводник представлен медными жилами диаметром 0,51 мм, навитыми по определенной технологии и заключенными в термостойкую изолирующую оболочку. В высокоскоростных ЛВС на UTP длины соединений обычно не превышают 100 м. Затухание на 100 МГц и при длине 100 м составляет около 24 дБ, при 10 МГЦ и 100 м - около 7 дБ. В последнее время созданы витые пары категорий 6 и 7.

Пару проводов часто используют как сбалансированную линию, в двух проводах которой передаются одни и те же уровни сигнала (по отношению к земле), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]